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A B S T R A C T

A practical procedure is presented for the calibration of partial safety factors (PSF) related to material
properties, with a focus on unreinforced masonry structures. The methodology addresses the propagation of
material and model uncertainties through a calibration based on the First Order Reliability Method (FORM) in
the context of nonlinear static analysis approaches. The so-called Star Design with Central Point (SDCP) method
is adopted for the computation of sensitivity coefficients and corresponding PSF for material uncertainty
(𝛾𝑚). First, it is demonstrated how such calibration is affected by the geometry of the structure, by the pre-
compression load level, and by the dominant failure mode. Second, it is evidenced that the most influential
parameters on the structural response vary depending on the adopted modelling strategy (macro- or micro-
modelling) for masonry discretisation. Third, the relative importance of model uncertainties is evidenced, for
which a dataset of numerical predictions for the in-plane capacity of masonry panels is collected from the
literature and discussed. Lastly, a comparison of different strategies to propagate uncertainty is provided,
which emphasises the promising potential of the proposed procedure.
. Introduction

The modelling of the seismic response of masonry structures is
urrently one of the most critical areas of research in both civil and con-
ervation engineering due to their high vulnerability to earthquakes.
ithin a mechanical standpoint, masonry is generally represented

hrough two modelling strategies: a macro-approach, where the ma-
erial is smeared out and represented through an equivalent and
omogeneous media, and a micro-approach, where the masonry com-
onents are explicitly modelled. In such a context, for each of the
atter modelling approaches, numerical models based on the finite-
lement method (FEM) [1–5], discrete-element method (DEM) [6–10],
iscrete macro-element method (DMEM) [11–13], and discrete rigid
ody spring models (RBSM) [14–16] can be adopted. A comprehensive
eview of the existing modelling strategies for masonry structures is
iven in D’Altri et al.[17]. However, the prediction of the mechanical
esponse of a masonry structure is complex. This is in part due to the
ombined effects of the aleatoric and epistemic uncertainties involved.
hile the former are generally associated with the inherent random-

ess of the geometric and material properties, the latter may arise from
imited knowledge of the structural model parameters, as well as from
he inherent limitations of available analytical and numerical strategies
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and the methods of analysis that can be adopted according to the code
recommendations. Within this framework, a sound identification and
propagation of uncertainty in the different steps involving the capacity
assessment of existing masonry structures becomes essential to prevent
severe structural failures and expensive repair costs. A full probabilistic
approach represents the most rigorous strategy for addressing all the
complex issues involved. Despite its increasing adoption at both the
research level [18–21] and in recommendation documents, such as
SAC-FEMA [22,23] and CNR-DT 212/2013 [24] guidelines, the imple-
mentation of this approach in engineering practice-oriented procedures
continues to face challenges, primarily arising from the significant com-
putational effort and expertise required for its application. To ensure
practicability, the strategy generally employed in current standards,
such as EN 1998-3 [25] and the Italian Structural Code [26], involves
a semi-probabilistic approach based on the use of confidence factors
(CF). For this purpose, a knowledge level (KL) is defined based on
the quantity and quality of the information gathered through tests
and inspections, which corresponds to a predefined value of the CF.
Several studies [27–31] pointed out the limitations associated with this
approach. The critical issues involve: (i) neglecting the dependence
of the CF, besides the knowledge level, on other aspects such as the
141-0296/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).
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relative characteristics of the materials, the type and complexity of
the structure, and the actual variability of the parameters influencing
the structural response; (ii) the a-priori definition of the parameters
that are affected by the CF; (iii) the use of a singular safety factor to
account for the impact of various sources of uncertainties, without an
explicit investigation of their effect on the safety assessment. However,
only a few studies have proposed alternative strategies to address such
limitations. Within this context, Franchin and Pagnoni [30] introduce
a new perspective for the calibration of resistance-side safety factors
(𝛾𝑅𝑑 ) compatible with the general Eurocode safety format. Specifically,
heir proposal aims at a more general definition for the 𝛾𝑅𝑑 in the

computation of the design resistance 𝑅𝑑 value, as outlined in EN
1990:2023 [32], as it tries to account for uncertainties associated
with the resistance model and geometric deviations, as traditionally
addressed, but also for uncertainties pertaining to material properties
and construction details. The study focuses on a local (element-level)
verification of a reinforced concrete structure, demonstrating the ca-
pability of the proposed format in providing tabulated values of 𝛾𝑅𝑑
for each resistance model proposed in the code [25]. Another strategy
is proposed by Cattari et al. [29], in which a sensitivity analysis
is introduced as an effective tool to support the seismic assessment
across multiple aspects, such as the identification of the parameters
that significantly influence the structural response, the optimisation
of investigation and testing plans, the selection of the parameters to
which apply a CF, along with the computation of CF values. In Haddad
et al. [31], the potential of the use of sensitivity analysis is further
explored through its introduction on the computation of two essential
parameters (the median value of the Intensity Measure compatible
with the attainment of a given Limit State, 𝐼𝑀𝐿𝑆 , and the correspond-
ng dispersion, 𝛽𝐿𝑆 ) for the derivation of fragility curves. The CF is
hen computed by rearranging the closed-form expression proposed
n Cornell et al. [23] for the calculation of the annual probability of
ccurrence. The study demonstrates the effectiveness of coupling the
ensitivity analysis with the Star Design with Central Point (SDCP)
ethod, yielding results comparable to those obtained through a more

igorous probabilistic approach while requiring a limited number of
nalyses.

In such a context, the present study proposes a practical procedure
or the calibration of material partial safety factors (PSF), with a focus
n unreinforced masonry structures. The propagation of both material
nd model uncertainty is accounted for through a calibration based
n the First Order Reliability Method (FORM). In the former case, the
pproach introduces the use of sensitivity analysis combined with the
DCP method to compute the PSF for material uncertainty (𝛾𝑚), aiming
o address the aforementioned shortcomings in the application of code-
ecommended CF. A calibration example is performed by accounting for
ifferent geometries, failure modes, and scales of analysis, i.e. at the
cale of a panel and façade wall. Since the most influential parameters
n the structural response may vary according to the adopted mod-
lling strategy, the calibration is also processed considering a discrete
pproach and a FE-based continuum approach through both macro-
nd micro-modelling strategies. At last, it is noteworthy to stress that
e also seek to represent model uncertainties in the estimation of the
SF, for which statistical parameters derived from a literature dataset
f numerical predictions for shear–compression tests are considered.

The paper is organised as follows: Section 2 discusses the FORM-
ased calibration of partial safety factors adopted in this study; Sec-
ion 3 delves into the numerical modelling strategies adopted; Section 4
etails the calibration of partial safety factors considering material
ncertainty (𝛾𝑚) at both panel and wall scale; Section 5 covers the
alibration of partial safety factors (PSF) accounting for model un-
ertainty (𝛾𝑅𝑑 ); Section 6 explores the effects of employing different
trategies to propagate uncertainty on the assessment of structural
apacity in masonry structures; Section 7 reports the main findings and
2

inal remarks. s
2. FORM-based calibration of partial safety factors

The calibration of partial safety factors for material properties is
performed based on the First Order Reliability Method (FORM) [33]
in accordance with EN 1990:2023 [32]. The latter defines the design
resistance value 𝑅𝑑 as:

𝑅𝑑 = 1
𝛾𝑅𝑑

⋅ 𝑅
{

𝜂𝑖 ⋅
𝑋𝑘,𝑖

𝛾𝑚,𝑖
; 𝑎𝑑 ;𝛴𝐹𝐸𝑑

}

𝑖 ≥ 1 (1)

Here, 𝛾𝑅𝑑 is the partial safety factor that accounts for (i) the un-
ertainty related to the resistance model, which can include simplified
elationships or complex numerical models; and (ii) the potential geo-
etric deviations if disregarded in the geometric modelling. The other

uantities in Eq. (1) are the conversion factor 𝜂 that accounts for
he moisture, temperature, scale, and ageing effects (assumed here as
= 1.0, i.e. no effect); the characteristic value of the 𝑖-th material

roperty 𝑋𝑘, which is affected by the partial safety factor 𝛾𝑚 to include
aterial variability; the design values of geometrical properties 𝑎𝑑 ; and

he design values for actions 𝐹𝐸𝑑 used in the structural assessment. The
ast term is introduced to account for the dependence of the design
esistance on actions, as for instance the case of resistance due to
riction. For simplicity, the partial safety factors 𝛾𝑚 and 𝛾𝑅𝑑 may be
ombined into a single PSF for the material property (𝛾𝑀 = 𝛾𝑚𝛾𝑅𝑑),
eading to the following expression:

𝑑 = 𝑅
{

𝜂𝑖 ⋅
𝑋𝑘,𝑖

𝛾𝑀,𝑖
; 𝑎𝑑 ;𝛴𝐹𝐸𝑑

}

𝑖 ≥ 1 (2)

The design value of a material property 𝑋 can be expressed as
𝑋𝑑 = 𝑋𝑘∕𝛾𝑚. Consequently, a general expression for 𝛾𝑚 can be derived
based on FORM as follows:

𝛾𝑚 =
𝑋𝑘
𝑋𝑑

=
𝐹−1
𝑥 (𝑝)

𝐹−1
𝑥 (𝛷(−𝛼 ⋅ 𝛽))

(3)

in which 𝐹𝑥 is the cumulative probability distribution function de-
scribing 𝑋, 𝑝 is the fractile adopted to compute the characteristic
value of 𝑋, 𝛷 is the standard Normal cumulative distribution, 𝛼 is
he FORM sensitivity factor, and 𝛽 is the reliability index. It has been

evidenced by Jacinto et al. [34] that the probabilistic model adopted
for a resistance variable has a significant impact on the partial factors
calibration. To address such a concern [35–39], the material properties
are herein modelled according to the Normal (ND), Lognormal (LND),
and Weibull (WD) distributions. The general form of Eq. (3) can be
adapted into three specific expressions, namely Eq. (4) for the Normal
distribution, Eq. (5) for the Lognormal distribution, and Eq. (6) for the
Weibull distribution (being 𝑘 a shape parameter directly related to the
coefficient of variation of 𝑋, i.e. 𝑉𝑥).

𝛾𝑚 =
1 +𝛷−1(𝑝) ⋅ 𝑉𝑋
1 − 𝛼 ⋅ 𝛽 ⋅ 𝑉𝑋

(4)

𝛾𝑚 = 𝑒𝑥𝑝
(

√

𝑙𝑛(1 + 𝑉 2
𝑋 ) ⋅ (𝛼 ⋅ 𝛽 +𝛷

−1(𝑝))
)

(5)

𝛾𝑚 =
(

𝑙𝑛(1 − 𝑝)
𝑙𝑛(1 −𝛷(−𝛼 ⋅ 𝛽))

)
1
𝑘

(6)

In general, the uncertainties in the resistance model are assumed to
follow a lognormal distribution [34,40,41] and, therefore, the partial
safety factor 𝛾𝑅𝑑 can be computed according to Eq. (7):

𝛾𝑅𝑑 = 1
𝜃𝑅

= 1
𝐹−1
𝜃 (𝛷(−𝛼𝜃 ⋅ 𝛽))

= 1
𝑒𝑥𝑝(𝑚𝜃 − 𝛼𝜃 ⋅ 𝛽 ⋅ 𝑠𝜃)

(7)

here 𝜃𝑅 is a random variable that describes the accuracy of the
esistance model, 𝐹𝜃 is the cumulative probability distribution function
escribing 𝜃𝑅, 𝛼𝜃 is the FORM sensitivity factor of 𝜃𝑅, and 𝑚𝜃 and 𝑠𝜃
epresent the sample mean and the sample standard deviation of the
ogarithm of 𝜃𝑅, respectively. A key aspect of a FORM-based calibration
f partial safety factors lies in the adoption of proper values for the sen-

itivity factors. The sensitivity 𝛼-value for a basic variable 𝑋 describes
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Fig. 1. Summary of the main steps for the proposed procedure for the calibration of material partial safety factors.
w
𝐷
𝑆
S
v
a

𝐷

u
l

he effect of its variation on the attainment of the considered limit
tate. Both ISO 2394 [42] and EN 1990:2023 [32] propose constant
alues for the FORM sensitivity factors. Specifically, a value of 0.80
s suggested for dominating resistance parameters and 0.32 for the
emaining parameters, provided that 0.16 < 𝜎𝑆∕𝜎𝑅 < 7.6, where 𝜎𝑆 and
𝑅 are the standard deviations of the dominating load and resistance
arameters, respectively. When this condition is violated, an 𝛼-value
f 1.0 should be adopted for the variables with the largest standard
eviation and a value of 0.4 should be adopted for the remaining
nes. Although the latter approach is generally conservative [43], it
ay ignore the relative characteristics of the materials, the structural

ype, the predominant failure mode, among other particular features
f a structural system. A reliability-based code calibration analysis
ay overcome the latter, but it requires the explicit definition of a

imit state function, which is generally unattainable in most nonlin-
ar analysis within a multi degree of freedom system. Furthermore,
his approach lacks practical applicability since it is based on a full
robabilistic analysis. In such a context, a procedure is presented for
he calibration of partial safety factors for material properties that still
xplores the concept of sensitivity factors. The proposed strategy allows
o: (i) identify the material parameters that affect most the structural
esponse; and (ii) calibrate partial safety factors that account for the
ctual sensitivity of the seismic response to each material parameter.
ensitivity factors are estimated through a sampling-based approach
y computing the first-order Sobol’ indices [44]. The Star Design with
entral Point (SDCP) method is adopted as it allows to derive the actual
ensitivity of the seismic response to each material parameter with a
imited number of analyses [31], differently from a full probabilistic-
ased calibration [23,24]. The method consists in performing a set of
𝑁 + 1 nonlinear static analyses, being 𝑁 the number of mechanical
arameters assumed to be random variables (RV), in which: (i) a total
f 2𝑁 numerical analyses are performed by considering both the lower
nd upper bounds of each random variable, and (ii) a single analysis,
hich serves as a reference, is conducted by considering the median
alues for the RV. A preliminary definition of the discrete values
hat characterise the interval range of a variable needs to be initially
onducted. Specifically, three values designated as lower, upper, and
edian are attributed to each RV. The variations recommended by the
pdated version of EN 1998-3 [25] (under review) and the commentary
ocument to the Italian Structural Code [26], as well as the information
vailable in the literature or experimental tests on similar masonry
ypologies, can be considered as a reference. The sensitivity of the
tructural response to each 𝑖-th random parameter is evaluated by
eriving the relative first order Sobol’ index 𝑆𝑖 according to Eq. (8),

which reads as:

𝑆𝑖 =
𝐷𝑉 ,𝑖 = 𝛼2 𝑖 = 1, 2,… , 𝑁 (8)
3

𝐷𝑉
𝑖

here, 𝐷𝑉 is the total variance associated with the model output and
𝑉 ,𝑖 is the partial variance related to the 𝑖-th parameter. Based on the
𝑖 values, the FORM sensitivity coefficients are derived since first-order
obol’ indices represent the squared 𝛼-factors [45]. Here, the partial
ariance 𝐷𝑉 ,𝑖 is computed from the output of 2𝑁 + 1 nonlinear static
nalyses as follows:

𝑉 ,𝑖 =

∑

𝑗 (𝑂𝑗 − 𝑂)
2

𝑛 − 1
𝑗 = 1, 2,… , 𝑛 (9)

where 𝑂𝑗 is the output control parameter that is assumed to be the
ltimate load derived from 𝑛 = 3 numerical analyses, according to the
ower, upper, and median values of the 𝑖-th parameter; 𝑂 is the mean

value of the three outputs for each 𝑖-th random variable.
The value of 𝑆𝑖 ranges between 0.0 − 1.0 and a higher value indi-

cates that the variation of the corresponding parameter significantly
influences the variation of the output control parameter. Thus, the
calculation of sensitivity coefficients can provide insights into the key
parameters that influence the structural response, which can be selected
for the application of the PSF. Under this scope, a specific 𝛼-value (𝛼1)
can be defined based on Eq. (9). This represents the minimum value
below which the sensitivity of a material property can be disregarded as
it would lead to a PSF value lower than one. The analytical expression
of 𝛼1 is determined by requiring that the PSF equals one in Eq. (3)-
(5), which results in Eq. (10) regardless of the selected probabilistic
distribution.

𝛼1 =
−𝛷−1(𝑝)

𝛽
(10)

According to ISO 2394 [42] and EN 1990:2023 [32] guidelines,
this study assigns the 5% fractile to the variable material parameters.
Target values for the reliability index 𝛽 of new structures are provided
in the EN 1990:2023 [32], being a function of both the reference
period and the consequence class (CC) of the building, i.e. based on
the expected consequences of failure and the marginal cost of safety.
A reduction in the target reliability index for existing structures has
been acknowledged to be acceptable due to the higher marginal cost
of safety [46,47]. In this regard, and following the recommendation
provided by the Dutch standard [48], the reliability index for existing
structures is reduced to 1.8, 2.5, and 3.3 for low, moderate, and high
consequences of failure, respectively. As a result, the 𝛼1-values are de-
termined to be 0.90, 0.65, and 0.50, each corresponding to 𝛽 values of
1.8, 2.5, and 3.3, respectively. The proposed procedure is implemented
in the following sections according to the steps summarised in Fig. 1.

3. Numerical modelling approaches

The modelling of the adopted masonry prototypes is achieved

through different strategies, including: (i) finite element (FE) macro-
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Fig. 2. Constitutive models assumed in the modelling of the masonry prototypes. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
model and a simplified micro-model approach by means of the FE soft-
ware DIANA FEA [49]; and (ii) a macro-modelling approach using the
discrete macro-element (DME) software HiStrA [50] (see Fig. 2). In the
former case, masonry is modelled as a homogeneous isotropic contin-
uum material through the Total Strain Rotating Crack Model (TSRM),
which is based on a smeared cracking approach [51]. Exponential
and parabolic softening are assumed in tension and compression,
4

respectively. The macro-FE models are developed by adopting plane
stress 8-node quadrilateral elements with a quadratic interpolation
scheme (Q16M), in which the average mesh size is set equal to the 10%
of the minimum dimensions of the panel geometries (i.e. 0.10m), as pro-
posed in Parisse et al. [52]. In the simplified micro-FE models, each unit
is modelled through plane-stress quadrilateral elements (Q16M). The
Mortar joints and potential brick cracks interfaces are modelled with
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Table 1
Mechanical parameters assumed in the macro-models for the homogenised continuum media.

Model 𝜌 𝜈 𝐸 𝑓𝑡 𝐺𝑓𝑡 𝑓𝑐 𝐺𝑓𝑐 𝑓𝑣0 𝛾𝑝 𝛾𝑢
[kg∕m3] [–] [N∕mm2] [N∕mm2] [N∕mm] [N∕mm2] [N∕mm] [N∕mm2] [–] [–]

Macro-FEM 𝜇 1800 0.25 1850 0.25 0.01 6.21 10.0 – – –
𝐶𝑜𝑉 – – 20%2 21%2 20% 12.2%1 20% – – –

DMEM 𝜇 1800 0.25 1850 0.25 0.01 6.21 10.0 0.23 0.005 0.03
𝐶𝑜𝑉 – – 20%2 21%2 20% 12.2%1 20% 21%2 20% 20%

Reference: 1 = experimental data [57,58]; 2 = updated version of EN 1998-3 [25].
Table 2
Mechanical parameters adopted in the simplified micro-FE models for the zero-thickness interface elements.

Interface 𝑘𝑛 𝑘𝑠 𝑓𝑡 𝐺𝐼
𝑓 𝑐 𝜙 𝜓 𝐺𝐼𝐼

𝑓 𝑓𝑐 𝐺𝑓𝑐
[N∕mm3] [N∕mm3] [N∕mm2] [N∕mm] [N∕mm2] [–] [–] [N∕mm] [N∕mm2] [N∕mm]

Mortar joints 𝜇 74.2 30.6 0.041 0.001 0.231 0.531 0.349 0.02 6.21 10.0
𝐶𝑜𝑉 20% 20% 25.7%1 20% 17.9%1 19%3 – 20% 12.2%1 20%

Potential brick cracks 𝜇 300 125 2.441 0.1 2.0 0.60 0.349 0.1 26.91 20.0
𝐶𝑜𝑉 20% 20% 25.8%1 20% 20% 20% – 20% 9%1 20%

Reference: 1 = experimental data [57,58]; 2 = updated version of EN 1998-3 [25]; 3 = Probabilistic Model Code [40].
b
d
v
c

3+3 nodes interface elements (CL6CT). A linear elastic behaviour is as-
sumed for the masonry units and material nonlinearity is lumped in the
interfaces, to which the so-called combined cracking-shearing-crushing
model is assigned. This model is based on a Mohr–Coulomb type fric-
tion surface combined with a tension cut-off and a compression cap [53,
54]. The average size of the finite element mesh considered for the ma-
sonry units and their interfaces is set as equivalent to 0.03m. Concern-
ng the discrete (DME) discretisation strategy, masonry walls are mod-
lled as an assemblage of three-dimensional (3D) quadrilateral macro-
lements with rigid plane edges and hinged vertices. In-plane shear
eformation is accounted through diagonal nonlinear links that connect
wo vertices of the quadrilateral element. The interaction of the macro-
lements is governed by a discrete distribution of nonlinear links at the
lane interfaces, which are responsible for simulating the flexural and
liding behaviour between panels, both in the in-plane and out-of-plane
irections [55]. The DMEM approach requires the definition of the ma-
erial parameters considering the flexural, shear-diagonal, and shear-
liding failure modes decoupled. To be consistent with the FE modelling
trategies, the flexural response is modelled considering that the tensile
nd compressive post-peak behaviours are simulated by an exponential
nd a parabolic curve, respectively. The shear-diagonal behaviour is
odelled by means of an elasto-plastic constitutive law with linear soft-

ning governed by a Turnšek-Cačovic yielding surface [56], whereas
he sliding mechanism is considered inhibited. An average mesh size
f 1.0m is adopted for the DME models since it allows a reasonable
ompromise between computational effort and accuracy of results.

. Material uncertainty

Partial safety factors (PSF) that account for material uncertainty 𝛾𝑚
are calibrated through the FORM-based strategy described in Section 2.
First, such calculation is conducted at a panel scale for which two ma-
sonry panels with different in-plane aspect-ratios serve as benchmarks.
In this regard, and prior to the calibration of the safety factors, the accu-
racy of the numerical models is assessed by comparing the results with
the literature experimental data [57] (Section 4.1). With such a base-
line, in Section 4.2 the calibration of the PSF is performed as a function
of the geometry and failure mode captured for each panel and provided
for the three modelling strategies adopted (Section 3). Afterwards, the
numerical application at the wall scale is presented in Section 4.3.

4.1. Panel scale: numerical calibration

The in-plane cyclic shear tests conducted by Anthoine et al. [57]
are selected as references. The experimental tests were conducted on
5

two clay brick masonry walls, built with clay brick units of 250 ×
Table 3
Mechanical parameters assumed in the simplified micro-FE models for the clay bricks.

𝜌 𝜈 𝐸
[kg∕m3] [–] [N∕mm2]

𝜇 1800 0.15 3000
𝐶𝑜𝑉 – – 20%

120 × 55mm3 and 10 mm thick mortar joints and following an English
ond pattern. The masonry panels were restrained according to a
ouble-fixed boundary condition, but the top edge was free to move
ertically so that the pre-compression level of 𝜎0 = 0.6 MPa remained
onstant throughout the experiment. Both panels have a base 𝐵 =
1.0m and thickness 𝑡 = 0.25m but different heights, i.e. a slender
panel with 𝐻 = 2.0m and a squat panel with 𝐻 = 1.35m. Such
geometries were chosen [57,58] in order to capture different failure
mechanisms. The slender panel exhibited an in-plane flexural failure,
while the squat panel attained a diagonal shear failure. The in-plane
tests are simulated by means of a monotonic static nonlinear analysis
and considering micro- and macro-modelling strategies (Section 3). The
assumed material properties for the masonry components are given in
Tables 1–3 according to each modelling strategy. The selected mean (𝜇)
values and the coefficients of variation (𝐶𝑜𝑉 ) follow the experimental
data assumed as Ref. [57,58]. When applicable, the recommendations
from the Probabilistic Model Code [40] and the updated version of
EN 1998-3 [25] for solid clay brick masonry and lime mortar are also
considered. The masonry density 𝜌, the Poisson’s coefficient 𝜈, and
the dilatancy angles 𝜓 are assumed to be deterministic variables. It
is worth of noting that the FEM-based and DMEM-based models rely
on different formulation that influence the key parameters governing
the mechanical response. Several studies demonstrated the latter by
conducting a calibration step in masonry panels based on the dominant
failure mechanism et al. [59]. Therefore, although the tensile strength
has similar values for both numerical strategies, these values have been
objectively found according to a calibration that aimed to reproduce a
similar response for the masonry panels.

The consistency of the numerical models is assessed by comparing
the experimental results [57] with the obtained load–displacement
curves. Fig. 3 highlights that the experimental behaviour and collapse
load are well reproduced by the numerical models for both masonry
panels. The numerical crack pattern is provided in Fig. 4 and Fig. 5 at
the peak load instant for the slender and the squat panels, respectively.
In particular, the comparison is provided in terms of the maximum
principal strain (𝐸1 = 𝜖11) distribution for the macro-FE models, of
relative displacement at the interface (𝐷𝑈𝑋) for the simplified micro-
FE models, and of the damage obtained by tensile or compression (in
red) at the interfaces (in green) for the DME models. Furthermore, in
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Fig. 3. Comparison between the experimental and numerical load–displacement curves. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Fig. 4. Comparison of the experimental and numerical crack patterns in the slender masonry panel (peak capacity). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 5. Comparison of the experimental and numerical crack patterns in the squat masonry panel (peak capacity). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
the latter case, the in-plane diagonal shear damage is represented with
an ‘x’ at the centre of the macro-element. Results demonstrate that both
macro- and micro-models predict a flexural failure for the slender wall,
with the typical distribution of the cracks at the two end sections, and a
shear diagonal failure for the squat wall with diagonal cracks extending
from the corners towards the centre. Although the experimental refers
to a cyclic analysis, it is noteworthy that a unidirectional analysis has
been performed numerically. Therefore, considering the squat panel, an
x-braced failure is clear in the experimental crack patterns of Fig. 5(a).
Instead, Fig. 5(b)–(d) show only part of the latter failure since the load
is unidirectional, thence the results are assumed to be representative
and adequate for the numerical calibration.

4.2. Panel scale: sensitivity and partial safety factors

Prior to the calibration of the partial safety factors 𝛾𝑚 that account
for the material uncertainty, sensitivity analyses are conducted to (i)
6

identify the material parameters that mostly affect the output control
parameter, which is herein assumed to be the ultimate load, and (ii) de-
rive the corresponding sensitivity coefficients. Two quasi-static analyses
are performed for each studied variable 𝑋𝑖: one in which the variable
assumed a lower bound value defined to be the 5% percentile; and
another for which the variable has an upper bound value defined to be
its 95% percentile. The remaining random variables are given, for both
cases, by the respective median value. Such a process is performed for
all the studied parameters, with a total of nineteen variables considered
for the simplified micro-FE models, five variables for the FE macro-
models, and eight variables for the DME models (see Tables 1–3).
The obtained sensitivity coefficients are reported in Fig. 6, in which
the parameters associated with the mortar joint and the unit failure
interface are represented as ‘uj’ and ‘uu’, respectively. Results evidence
that when a macro-FE approach is adopted, the global behaviour of
the panels is mainly dominated by the parameters related to the tensile
regime (see Fig. 6a). However, in the case of the DME models, the



Engineering Structures 318 (2024) 118656F. Vadalà et al.
Fig. 6. Sensitivity coefficients for the random variables of the panel prototypes.
response is mainly influenced by the shear regime parameters (Fig. 6b).
This difference is explained because the tensile and shear behaviours of
masonry are modelled as uncoupled in the adopted discrete approach.
As concerns the simplified micro-FE models (Fig. 6c), the global re-
sponse of both panels is mainly influenced by the ones related to the
tensile and shear regimes of the joint interface element. One can note
that the parameters related to the brick units tend to have a lower
influence on the global response. These findings are in agreement with
experimental evidence concerning the case of weak mortar masonry, in
which the tensile and shear regimes tend to govern the global structural
behaviour [60].

The sensitivity coefficients reported in Fig. 6 are indicative of an
axial load-ratio 𝜎0∕𝑓𝑐 of 0.1. Given that the predominant failure mode
is influenced by the applied axial load, its impact on the sensitivity
coefficients was investigated for several 𝜎0∕𝑓𝑐 values with reference to
the DME model of the slender panel prototype. The results reported in
Table 4 highlight that the 𝛼-values vary according to the applied axial
load, in line with the shifts in the predominant failure mode.

Based on the results of the sensitivity analyses, the PSF accounting
for material variability can be derived for the influential parameters,
which are defined according to the threshold 𝛼-values (𝛼1) determined
in Section 2. Table 5 presents the 𝛾𝑚 values for both slender and squat
panels. These are reported for the influential parameters conditioned
by each modelling strategy, probabilistic model (i.e. Normal (ND), Log-
normal (LND), and Weibull (WD) distribution), and referring to a target
reliability index of 2.5. The latter value corresponds to a CC2 (normal)
and is adopted based on the evidence that most existing masonry
7

buildings typically belong to the CC2 or CC3 (high) consequence classes
Table 4
Variation of the sensitivity factors with the axial load-ratio 𝜎0∕𝑓𝑐 (the highest 𝛼-value
for each 𝜎0∕𝑓𝑐 value is reported in bold).
𝜎0∕𝑓𝑐 Failure mode 𝐸 𝑓𝑡 𝐺𝑓𝑡 𝑓𝑐 𝐺𝑓𝑐 𝑓𝑣0 𝛾𝑝 𝛾𝑢
0.05 Flexural 0.04 0.00 0.00 0.99 0.03 0.00 0.00 0.00
0.1 Diagonal-shear 0.01 0.00 0.00 0.34 0.01 0.94 0.00 0.00
0.2 Diagonal-shear 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
0.4 Diagonal-shear 0.02 0.00 0.00 0.14 0.00 0.99 0.00 0.03
0.6 Crushing 0.04 0.00 0.00 0.94 0.04 0.37 0.00 0.00

of failure [32]. Thus, this choice ensures a more representative and
applicable assessment for most of the existing masonry structures. For
the micro-FE models, the parameters related to the potential brick crack
interface are excluded from the calibration of the partial safety factors,
as their influence on the global response was found to be negligible
for a weak-mortar-strong-unit type [21]. By analysing Table 5, it is
evident that the Weibull model tends to be more conservative, hence
leading to higher partial factors. In contrast, the Lognormal model leads
to less conservative values. This discrepancy is mainly due to a larger
relative weighting of the left tail in the Weibull model and a lower
one in the Lognormal model. Furthermore, the difference between
models becomes more apparent for higher coefficients of variation, as
shown in Fig. 7. The latter reports the variation of 𝛾𝑚 with reference to
the Normal, Lognormal, and Weibull distributions and considering the
highest (25.8%) and lowest (12.2%) CoV values among the adopted
material parameters. Attention is thus required when selecting the
probabilistic model for a resistance variable. In particular, the adoption
of the Normal and Weibull models is recommended for variables with
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Table 5
Partial safety factors accounting for the material variability in the panel prototypes.

Prototype Modelling approach Influential parameter Probabilistic distribution
Normal Lognormal Weibull

Slender panel Macro-FEM 𝑓𝑡 1.28 1.16 1.36
DMEM 𝑓𝑣0 1.29 1.16 1.36
Simplified micro-FEM 𝜙𝑢𝑗 1.16 1.10 1.21

Squat panel Macro-FEM 𝑓𝑡 1.34 1.18 1.43
DMEM 𝑓𝑣0 1.38 1.19 1.47
Simplified micro-FEM 𝜙𝑢𝑗 1.03 1.02 1.04
Table 6
Partial safety factors that include material variability for the analysis of the wall prototype.

Prototype Modelling approach Influential parameter Probabilistic distribution
Normal Lognormal Weibull

‘Door Wall’ façade Macro-FEM 𝑓𝑡 1.37 1.19 1.45
DMEM 𝑓𝑣0 1.38 1.19 1.46
Fig. 7. Variation of the partial safety factor for material uncertainty 𝛾𝑚 considering
ifferent CoV values and probabilistic distributions. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

ow CoV values, given that their degree of conservatism increases with
he coefficient of variation, while the Lognormal model emerges as a
ore generally suitable alternative.

.3. Wall scale: sensitivity and partial safety factors

The geometry of the wall assumed as a benchmark is given in Fig. 8
nd was retrieved from a façade of the prototype known in literature as
he ‘‘Door wall’’, which is part of a two-storey URM building tested by
alvi and Magenes [61,62]. This wall is selected since it is made with
he same characteristics as the masonry components studied at a panel
cale, thus guaranteeing the objectivity of the numerical calibration
erformed in Section 4.1. The wall presents a thickness of 0.25m and
s characterised by a regular opening arrangement, with two doors on
he ground floor and two windows on the upper floor. The influence
f transverse walls is neglected and the masonry façade is considered
s restrained only at the base. The presence of reinforced concrete tie
eams is assumed at each floor level and vertical loads equal to 20.7
nd 19.7 kN∕m are applied to the lower and upper floors, respectively,
hich align with rigid diaphragms. The wall is modelled according

o the DMEM and macro-FEM approach by assuming the material
roperties reported in Table 1.

Sensitivity analyses are conducted following the procedure adopted
n Section 4.2 aiming at the identification of the most relevant material
arameters to the structural response of the URM wall prototype. The
ensitivity coefficients reported in Fig. 9 highlight that the response is
ainly influenced by the shear strength and the tensile strength for the
ME and macro-FE model, respectively, which is consistent with the
8

Fig. 8. Geometry of the ‘Door wall’ prototype (dimensions in m).

outcomes retrieved at a panel scale. Partial safety factors that account
for the shear strength variability are derived considering the Normal,
Lognormal, and Weibull distribution and with reference to a target
reliability index of 2.5 (see Table 6). The computed values for 𝛾𝑚 are
similar to the ones found at the panel scale (Section 4.2) since the
global behaviour of the URM wall is mainly influenced by the failure of
the ground floor piers, which have an aspect-ratio that is comparable
with the masonry panel prototypes. The difference lies in the higher
axial load-ratio of 𝜎0∕𝑓𝑐 = 0.20 for the piers, in contrast to the 𝜎0∕𝑓𝑐 =
0.10 ratio applied to the panel prototypes. Such consistency in the 𝛾𝑚
values can be clarified by observing that the influential parameters
and their corresponding sensitivity coefficients tend to remain constant
in the range of 𝜎0∕𝑓𝑐 where a specific failure mode is prevailing, as
demonstrated in Table 4.

5. Model uncertainty

The estimation of model uncertainty (𝜃𝑅) related to the predic-
tion of the structural capacity of masonry structures is addressed.
Such estimation is aligned with the methodologies presented in ISO
2394 [42] and EN 1990:2023 [32], for which 𝜃𝑅 is treated as a random
variable that follows a lognormal distribution. The effect of geometric
variability and testing errors is disregarded since it is assumed that
the workmanship under the controlled laboratory conditions is of high
quality. Workmanship defects in the specimen preparation are thus
excluded, e.g. variation of mortar thickness, incorrect proportioning in
mixing of the mortar, disturbance of bricks after laying on the mortar,

and misalignment of wall panels. Consequently, 𝜃𝑅 reflects mainly
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Fig. 9. Sensitivity coefficients of the ‘Door wall’ prototype.
Table 7
Statistical descriptors of model uncertainty 𝜃𝑅.

Statistical descriptors of 𝜃𝑅 Flexural failure (F) Diagonal shear failure (DS)

Mean value 𝜇𝜃 1.047 0.994
𝑚𝜃 0.042 −0.008

Standard deviation 𝜎𝜃 0.085 0.064
𝑠𝜃 0.083 0.064

Coefficient of variation 𝐶𝑜𝑉𝜃 8.1% 6.4%
the deviation of the numerical results caused by numerical modelling
simplifications and by the intrinsic phenomenological and formulation-
based characteristics of each numerical strategy. In this regard, and
to better understand the statistical properties of 𝜃𝑅 within shear–
compression tests on URM panels, a literature review was conducted.
The data gathered are presented in Appendix and refer only to regular
masonry panel prototypes constrained in a double-fixed condition and
subjected to a constant vertical overload and in-plane horizontal load.
Such a dataset is compiled considering the correspondence between the
experimental [57,63–66] and numerical [14,55,67–83] failure modes
(F, flexure or DS, diagonal shear).

To better characterise the database, the values for the model un-
certainty are also provided in Fig. 10a and Fig. 10b by discriminating
the panel aspect-ratio (𝜆 = 𝐻∕𝐵) and the axial load-ratio (𝜎0∕𝑓𝑐). The
evaluated panels have an aspect-ratio that ranges from 0.7 to 2.5 and
an axial load-ratio of 0.03−0.20. Fig. 11a shows that the predicted shear
capacity (𝑉𝑛𝑢𝑚) is in general in good agreement with the experimental
results (𝑉𝑒𝑥𝑝). The obtained mean values for 𝜃𝑅 (i.e. 𝜇𝜃) are close to
1.0 and show a low coefficient of variation (CoV𝜃), as presented in
Table 7. The suitability of a lognormal distribution for 𝜃𝑅 is verified by
analysing the quantile–quantile plot between the normal probability of
the logarithm of 𝜃𝑅, which is reported in Fig. 10b. The close alignment
of the data confirms that 𝜃𝑅 can be accurately represented with a
lognormal distribution.

Based on the statistical descriptors of 𝜃𝑅 and from Eq. (7), a value
of 𝛾𝑅𝑑 equal to 1.02 and 1.06 is derived for flexural and shear diagonal
failure, respectively. The target reliability index is assumed to be equal
to 𝛽 = 2.5 in consistency with Section 4, while a value of 𝛼𝜃 = 0.32
is adopted for the FORM sensitivity factor for the model uncertainty,
which corresponds to the recommended value by EN 1990:2023 [32]
and ISO 2394 [42] for non-dominating resistance variables.

6. Probabilistic vs confidence factor approach: capacity assess-
ment of masonry structures

An insight is provided into the consequences that different uncer-
tainty propagation strategies have on the structural capacity assessment
9

of masonry structures. The case studies analysed in Sections 4.2 and
4.3 are considered and three approaches are evaluated, namely: (i)
the application of code-recommended confidence factors (CFs); (ii) the
adoption of material PSF 𝛾𝑀 computed through the proposed proce-
dure; and (iii) the use of a full-probabilistic approach based on the
SDCP method. The CF-based assessment is conducted according to the
recently updated EN 1998-3 [25] and the Italian Structural Code [26].
Concerning the former, the CFs (identified as 𝛾𝑅𝑑 in the updated version
of EN 1998-3 [25]) are applied to the ultimate shear strength, which
is derived by assuming the average values of the material properties.
Since the adopted mechanical properties of masonry are based on ex-
perimental tests [57], the recommended values corresponding to KLM3
are employed, selecting 1.65 for flexural failure and 1.40 for diagonal
shear failure [25]. In the case of the Italian Structural Code [26],
the shear capacity is computed by dividing the average values of the
strength parameters by a CF of 1.0, which corresponds to the KL3, and
a 𝛾𝑀 value of 2.5, as recommended for masonry made with elements
of category II and class I. To what concern the assessment based on the
use of material PSF 𝛾𝑀 , the in-plane capacity is estimated according
to Eq. (2). In particular, the average values of the strength parameters
are divided by the PSF defined as 𝛾𝑀 = 𝛾𝑚𝛾𝑅𝑑 based on the values of
𝛾𝑚 and 𝛾𝑅𝑑 calibrated in Sections 4 and 5, respectively. The 𝛾𝑀 values
are reported in Table 8, for each analysed case study and adopted
modelling strategy. In the case of the ‘Door wall’ prototype, 𝛾𝑀 is
derived by assuming a value of 𝛾𝑅𝑑 equal to 1.06, which corresponds to
the one calibrated for diagonal shear failure of URM panels in Section 5.
This choice is motivated by the evidence that the global behaviour of
the URM wall is mainly influenced by the response of the ground floor
piers, which tend to exhibit a diagonal shear failure.

Since the latter strategy is based on a semi-probabilistic approach,
a comparison with a full-probabilistic one is provided. In this case,
the in-plane capacity is estimated based on the formulation presented
in Eq. (1), where (i) the effect of material variability, accounted in
𝑅{…}, is evaluated through the SDCP method; and (ii) the model
uncertainty is accounted through 𝛾𝑅𝑑 , with assumed values in line with
those derived in Section 5. Concerning the former, two quasi-static
analyses are performed for each 𝑁 variable: one in which the variable
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Fig. 10. Scatter of 𝜃𝑅 for panels with a diagonal shear (DS) or flexural (F) failure mode.
Fig. 11. Experimental and predicted shear capacity plot and (b) normal probability paper plot of the logarithm of 𝜃𝑅.
Table 8
Partial safety factors (PSF) for material strength parameters that include material and model uncertainties.

Prototype Modelling approach Influential parameter Probabilistic distribution
Normal Lognormal Weibull

Slender panel Macro-FEM 𝑓𝑡 1.32 1.18 1.39
DMEM 𝑓𝑣0 1.30 1.18 1.38
Simplified micro-FEM 𝜙𝑢𝑗 1.18 1.12 1.23

Squat panel Macro-FEM 𝑓𝑡 1.46 1.27 1.56
DMEM 𝑓𝑣0 1.42 1.25 1.52
Simplified micro-FEM 𝜙𝑢𝑗 1.10 1.08 1.11

‘Door Wall’ facade Macro-FEM 𝑓𝑡 1.47 1.26 1.57
DMEM 𝑓𝑣0 1.45 1.26 1.54
assumes a lower bound value defined to be the 5% percentile; and
another, where the variable assumes an upper bound value defined to
be the 95% percentile. The remaining random variables are given, for
both cases, by the respective median values. An additional analysis is
performed by adopting the average values for all uncertain parameters.
Finally, 𝑅{…} is defined as the median value of the ultimate load
resulting from the 2𝑁 + 1 quasi-static analyses. The comparison of the
hear capacity estimation according to the three adopted approaches
s reported in Fig. 12. The results obtained through the adoption of
he proposed procedure (denoted in Fig. 12 as ‘PSF’) are presented
onsidering the assumption of different probabilistic distributions to
odel material uncertainty, i.e. Normal (ND), Lognormal (LND), and
eibull (WD). As a reference, the ultimate load estimated by adopting
10
the average material properties is reported (depicted in Fig. 12 as
‘Exp. Cab.’). The shear capacity predictions based on the calibrated
safety factors exhibit small variations based on the assumed model
distribution. In particular, the differences are more pronounced in the
case of the squat panel prototype. This result is strictly related to the
value of the sensitivity coefficient of the influential parameter, which
is higher in the case of the squat panel. As illustrated in Fig. 7, a high
sensitivity coefficient implies that even a minor adjustment can result
in significant changes in the partial safety factors, especially when the
coefficient of variation (𝐶𝑜𝑉 ) is also high. Furthermore, the adoption of
the calibrated 𝛾𝑀 values leads to estimations that are, in most cases, on
the safe side compared to the full-probabilistic analysis. On the other
hand, the analyses performed according to the CF-based approaches
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Fig. 12. Comparison of the shear capacity obtained through a probabilistic-based and a CF-based method. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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tend to provide overly conservative estimates, especially for slender
panels, exhibiting differences ranging up to 40% when compared to
the other approaches. This outcome underscores a significant limitation
of a CF-based approach, namely the adoption of predefined CF values
that are only connected to the KL and unrelated to the structure under
analysis. Indeed, despite ensuring a conservative result, adopting this
approach may lead to the decision of not needed and costly retrofitting
interventions. Therefore, the use of calibrated partial safety factors
tailored to the specific characteristics of the structure provides a more
rational assessment.

It is noteworthy that the estimation of 𝜃𝑅 may be affected by
the probable calibration of the material parameters adopted in the
considered research works. Indeed, it has been demonstrated that the
lack of a full knowledge of the tested structures can lead to significant
differences between numerical strategies [84,85]. A further exercise
has been conducted to evaluate the effect of a lower accuracy of the
numerical models on the shear capacity estimation. In this context,
the material PSF have been calibrated with reference to the slender
11

panel prototype modelled according to the DMEM approach. The 𝛾𝑚 t
value has been adopted consistently with the one calibrated in 4.2 with
reference to the Weibull model, i.e. 𝛾𝑚 = 1.36, as it demonstrated its
higher degree of conservativeness when compared to the other models.
As regard to 𝛾𝑅𝑑 , a calibration test has been conducted by considering

standard deviation of 𝜃𝑅 equal to 0.166, which is double the value
etrieved from the database. Despite the increased standard deviation,
nly a slight variation in the predicted shear capacity (i.e. 65.2 kN)
as been reported compared to its initial value (i.e. 68.3 kN). This
esult is mainly due to the assumption of a non-dominating resistance
ariable for 𝜃𝑅, corresponding to a sensitivity factor 𝛼𝜃 = 0.32 as
ecommended by EN 1990:2023 [32] and ISO 2394 [42]. Consequently,

calibration test has been conducted by increasing the sensitivity
actor 𝛼𝜃 to 0.80, as recommended by the aforementioned standards
or dominating resistance variables. This resulted in a predicted shear
apacity of 57.4 kN, which is still higher than the results obtained
hrough the CF-based approaches according to the recently updated EN
998-3 [25] and the Italian Structural Code [26], which are 49.4 kN
nd 40.4 kN, respectively. These findings demonstrate the tendency of
he CF-based approaches to provide conservative estimates.
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7. Final remarks

A practice-oriented procedure for the calibration of material partial
safety factors was presented. With the aim of reducing the computation
time and complexity of a full-probabilistic approach, a FORM-based
calibration was adopted to propagate both material and model un-
certainties. First, the use of sensitivity analyses coupled with a SDCP
method was explored to derive the corresponding partial safety fac-
tors for material uncertainty (𝛾𝑚). Several case studies with different
geometries and either at a panel or façade wall scale were considered.
The effect of different failure modes was evaluated, as well as the use
of different numerical approaches (macro- and micro-modelling) within
the framework of nonlinear static analyses. Second, the partial safety
factors for model uncertainties (𝛾𝑅𝑑) were derived according to the
methodologies outlined in ISO 2394 [42] and EN 1990:2023 [32]. To
this end, the statistical properties of the numerical results related to
the in-plane response of URM panels have been collected through a
literature review. Here, it has been hypothesised as a good approach to
recommend values for 𝛾𝑅𝑑 according to the predominant failure mode,
i.e. a flexural and a shear diagonal failure.

The study addressed the effect of propagating uncertainties accord-
ing to different strategies for the assessment of the structural capacity of
masonry structures. Three approaches with different complexity levels
were considered: (i) a full-probabilistic approach based on the SDCP
method; (ii) the CF-based approach according to the recently updated
EN 1998-3 [25] and the Italian Structural Code [26]; (iii) the adoption
of partial safety factors for material property 𝛾𝑀 , defined as 𝛾𝑀 =
𝛾𝑚𝛾𝑅𝑑 , based on calibrated values of 𝛾𝑚 and 𝛾𝑅𝑑 .

The novelties of the study are threefold: (i) introduction of sensi-
tivity analysis combined with the SDCP method to compute PSF for
material uncertainty; (ii) investigation of the effects on PSF calibration
when considering different geometries, failure modes, modelling strate-
gies (i.e., discrete approach and FE-based continuum approach), and
scales of analysis (i.e., panel and façade wall scales); (iii) derivation
of statistical parameters from a literature dataset of numerical predic-
tions for shear–compression tests to represent model uncertainties in
estimating PSF.

The following points summarise the main findings and contributions
of the paper:

• the key input parameters influencing the in-plane behaviour of
masonry structures may vary based on the adopted modelling
strategy. Their influence may also change when different levels
of compressive loads are applied. However, it has been demon-
strated that the relative importance of such parameters is kept
consistent for a range of applied axial loads depending on the
specific dominant failure mode (shear sliding, flexural, diagonal
shear, and crushing). These ranges of axial load can be found
through analytical criteria available in the literature [58,86] as
well as in standards and guidelines [25,26]. In this study, the
influencing parameters were evaluated for different compression
levels within different failure domains, which may be impractical
within a seismic assessment of a masonry structure. In such
cases, it is suggested to evaluate the critical parameters according
to a range of interest that is conditioned by the existing pre-
compression level of the structure according to a self-weight
analysis, as in Cattari et al. [87].

• the adoption of different probabilistic models for a resistance
variable affects the calibration of PSF, particularly for variables
with high CoV values. Specifically, the adoption of the Normal
and Weibull models is recommended for variables with low 𝐶𝑜𝑉
values as their degree of conservatism increases with the coeffi-
cient of variation. The Lognormal model seems more adequate in
general;

• the results from a quantile–quantile plot of 𝜃𝑅 confirm the suit-
ability of a lognormal distribution for model uncertainties, in line
with the recommendations outlined in ISO 2394 [42] and EN
12

1990:2023 [32];
• the adoption of standard-based values for the CF can lead to
overly conservative estimates. This underscores a primary limi-
tation of the CF-based approach, which lies in the application of
pre-determined CF values independently of the type of structural
system;

• the comparison of the in-plane capacity prediction based on the
use of a full-probabilistic approach and on the adoption of cali-
brated 𝛾𝑀 values proved the suitability of the proposed procedure
in replacing a full probabilistic analysis without compromising
the uncertainty representativeness, while guaranteeing results on
the safe side.

Finally, further investigations are necessary to better understand
the potential of the proposed approach in capturing the propagation of
material and model uncertainties in the case of out-of-plane behaviour
in masonry structures. Additional efforts are also required to include
the effect of the geometrical variability in the computation of 𝛾𝑀 .
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Table A.1
Database of model uncertainty observation.

Authors Modelling
approach

Representation
scale

Reference
experimental test

𝜎0∕𝑓𝑐 𝜆 Failure mode 𝑉𝑛𝑢𝑚 𝑉𝑒𝑥𝑝 𝜃𝑅𝑑 = 𝑉𝑒𝑥𝑝∕𝑉𝑛𝑢𝑚

Bomben et al.,
2023 [83]

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 68.2 72.0 1.06

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 67.4 72.0 1.07

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 66.4 72.0 1.08

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 75.2 81.5 1.08

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 74.9 81.5 1.09

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 74.8 81.5 1.09

Calderini and
Lagomarsino,
2008 [67]

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 71.8 72.0 1.00

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 78.1 81.5 1.04

Caliò et al.,
2012 [55]

DMEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 60.8 72.0 1.18

DMEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 81.1 81.5 1.00

Casolo and Peña,
2007 [14]

DEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 83.6 72.0 0.86

DEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 84.1 81.5 0.97

Dolatshahi et al.,
2018 [74]

FEM Micro-scale Petry and Beyer,
2015 [64]

0.18 1.12 DS 209.8 187.0 0.89

FEM Micro-scale Petry and Beyer,
2015 [64]

0.18 1.12 DS 179.4 178.0 0.99

FEM Micro-scale Petry and Beyer,
2015 [64]

0.09 1.12 DS 129.8 135.0 1.04

FEM Micro-scale Petry and Beyer,
2015 [64]

0.18 1.12 F 107.8 121.0 1.12

Gatta et al.,
2018 [75]

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 68.4 72.0 1.05

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 82.8 81.5 0.98

Kesavan and
Menon, 2022
[80]

FEM Micro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 82.8 81.5 0.98

Minga et al.,
2018 [76]

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 70.1 72.0 1.03

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 83.0 81.5 0.98

Morandini at al.,
2022 [81]

AEM Micro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 69.3 72.0 1.04

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 66.7 72.0 1.08

AEM Micro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 84.7 81.5 0.96

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 81.7 81.5 1.00

Penna et al.,
2014 [69]

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 67.9 72.0 1.06

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 85.8 81.5 0.95

Petracca et al.,
2016 [71]

FEM Macro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 54.0 52.0 0.96

FEM Micro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 52.4 52.0 0.99

Pulatsu et al.,
2020 [78]

DEM Micro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 54.7 52.0 0.95

(continued on next page)
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Table A.1 (continued).
Authors Modelling

approach
Representation
scale

Reference
experimental test

𝜎0∕𝑓𝑐 𝜆 Failure mode 𝑉𝑛𝑢𝑚 𝑉𝑒𝑥𝑝 𝜃𝑅𝑑 = 𝑉𝑒𝑥𝑝∕𝑉𝑛𝑢𝑚

Raka et al.,
2015 [70]

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 63.2 72.0 1.14

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 72.1 81.5 1.13

Rinaldin et al.,
2016 [72]

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 72.5 72.0 0.99

EFM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 81.0 81.5 1.01

Saloustros et al.,
2018 [77]

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 84.8 81.5 0.96

Sousamli et al.,
2022 [82]

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 2.00 F 75.6 72.0 0.95

FEM Macro-scale Anthoine et al.,
1994 [57]

0.10 1.35 DS 78.1 81.5 1.04

FEM Macro-scale Messali et al., 2020
[66]

0.08 0.70 DS 118.6 116.6 0.98

FEM Macro-scale Messali et al., 2020
[66]

0.08 0.70 DS 101.5 109.0 1.07

Wilding et al.,
2017 [73]

FEM Micro-scale Salmanpour et al.,
2015 [65]

0.20 0.96 DS 212.5 197.0 0.93

FEM Micro-scale Salmanpour et al.,
2015 [65]

0.10 0.96 DS 134.6 145.0 1.08

FEM Micro-scale Petry and Beyer,
2015 [64]

0.18 1.12 F 104.6 121.0 1.16

Xie et al., 2021
[79]

FEM Micro-scale Messali et al., 2020
[66]

0.08 0.70 DS 127.8 116.6 0.91

FEM Micro-scale Messali et al., 2020
[66]

0.07 2.5 F 16.4 15.0 0.91

FEM Micro-scale Messali et al., 2020
[66]

0.08 0.70 DS 116.3 109.0 0.94

FEM Micro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 51.5 52.0 1.01

Zucchini and
Lourenço, 2009
[68]

FEM Macro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 60.8 52.0 0.86

FEM Micro-scale Raijmakers and
Vermeltfoort, 1992
[63]

0.03 0.99 DS 55.7 52.0 0.93

Modelling approaches: AEM = Applied Element Method; DEM= Discrete Element Method; DMEM = Discrete Macro-Element Method; EFM = Equivalent Frame Method; FEM =
Finite Element Method.
Failure modes: DS = Diagonal Shear; F = Flexural.
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