
Structures 63 (2024) 106385

Available online 4 May 2024
2352-0124/© 2024 The Author(s). Published by Elsevier Ltd on behalf of Institution of Structural Engineers. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

The role of uncertainties in the seismic assessment of masonry churches 
affected by compound rocking failure mechanism: Macro-block limit 
analysis investigations 
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A B S T R A C T   

Façade overturning is one of the most common failure mechanisms observed in single-nave masonry churches 
when subjected to seismic action. Several factors, including geometry, masonry patterns, mechanical properties, 
and loading conditions, influence the force and displacement capacities of these masonry churches. This study 
aims to assess the impact of various model parameters on the seismic assessment of single-nave masonry 
churches subjected to the compound rocking failure mechanism by adopting macro-block limit analysis. The 
analysis of variance (ANOVA) is employed to investigate the influence of geometrical and mechanical parameters 
under the assumption of complete knowledge of the structure. Furthermore, probabilistic analysis explores how 
incomplete knowledge may affect the structural assessment of the compound rocking failure mechanism in 
single-nave masonry churches. The findings of this study highlight the importance of accurate modelling and 
surveying in evaluating the seismic vulnerability of single-nave masonry churches and can be useful for devel-
oping effective seismic risk mitigation strategies.   

1. Introduction 

Historic masonry structures (HMS), comprising secular and sacred 
monumental buildings, are important assets of worldwide historical 
centres. These structures play an important economic and societal role, 
but their high level of material degradation due to time and low struc-
tural performance under seismic actions pose significant challenges to 
their structural integrity preservation. 

If one refers to the structural integrity assessment level, HMS are 
susceptible to experiencing localised out-of-plane (OOP) failure mech-
anisms when an earthquake happens, especially when lacking box-like 
or integral structural behaviour [1–3]. In this regard, single-nave ma-
sonry churches are one of the most vulnerable structural typologies and 
are prone to exhibit OOP failure mechanisms. These structures exhibit 
severe damage patterns caused by insufficient connections among 
structural elements, leading to the generation of trusting actions which 
can dramatically preclude their stability. Furthermore, several factors, 

including geometry, masonry pattern, mechanical properties, and 
loading conditions, may influence these structures’ force and displace-
ment capacities [4-6]. In fact, structures characterised by a regular 
masonry pattern tend to have better box-like behaviour than those with 
rubble or irregular patterns [7]. Within the scope of incorporating all the 
factors mentioned earlier into the structural assessment protocols, many 
researchers have directed their efforts towards implementing advanced 
computational modelling strategies to aid in preserving HMS. These 
modelling techniques can be broadly classified into numerical and 
analytical approaches [8–11], sometimes coupled with probabilistic 
approaches to consider uncertainties at both epistemic and aleatory 
levels [12]. 

Tipically, numerical approaches involve Finite Element Method 
(FEM) [13–16] or Discrete Element Method (DEM) [17–19] frameworks. 
These modelling approaches represent the masonry material at different 
scales using equivalent continuum, macro-blocks, or discrete represen-
tations [8]. FEM is a widely used approach that enables the 
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representation of masonry using either a homogeneous equivalent 
media (known as macro-modelling) or a discrete representation of units 
and joints (known as simplified micro-modelling). FEM offers a versatile 
application and is widely used due to its ability to represent masonry 
structures in a realistic manner [14,20]. DEM is a computational 
modelling technique that is particularly suitable for the analysis of 
masonry structures with both dry- and mortared joints [21,22], and it 
represents the masonry structures by a discontinuous medium of rigid or 
deformable blocks. One of the key advantages of using DEM in structural 
analysis is its ability to account for the complex geometrical features of 
masonry [23]. This computational procedure offers great flexibility and 
enables a more realistic representation of the behaviour of masonry 
structures under various loading conditions. In [24], the authors utilised 
DEM to predict the structural behaviour and capacity of URM walls with 
openings under lateral loading, accounting for uncertainties in material 
properties. That study emphasises the importance of material properties 
in determining the force capacity, displacement capacity (drift limits), 
and collapse mechanisms of URM walls with openings. 

Other authors pose some question marks regarding the effectiveness 
of FEM and DEM, which are sometimes considered impractical and 
costly when analysing masonry structures under seismic excitation and 
considering uncertainty [25]. In [12], a probabilistic-based numerical 
strategy that combines a discrete macro-element model with a homog-
enisation model is proposed to overcome this issue. The approach gua-
rantees a probabilistic nature through a forward propagation of 
uncertainty in loading, material, mechanical, and geometrical parame-
ters. Furthermore, the method has been defined as computationally 
efficient due to several assumptions made during incremental dynamic 
analysis. 

One should note that when a disaster happens, the structural safety 
assessment of many constructions, including building aggregates, 
churches and other monuments, must be performed quickly, and the 
computational efficiency of FEM and DEM is rarely compatible with the 
need to have a rigorous real-time post- or pre-earthquake assessment 
[26]. Advanced numerical tools for analysing HMS during earthquakes 
often exceed the available time and budget; hence, according to the 
suggestion provided by several national and international standards [27, 
28], structural engineers frequently use analytical approaches based on 
limit analysis (LA) theorems. On this regard, post-earthquake surveys 
helped researchers compile abacuses of local failure mechanisms. Such 
geometrical information are typically used in conjunction with the 
upper bound theorem of the limit analysis, which aims to calculate the 
structural capacity numerically, reducing the computation and budget 
cost, even if slightly affecting the accuracy and level of confidence of the 
obtained result [29]. Over the past few decades, significant advance-
ments have been made in understanding and formulating the concept of 
LA at both macro and micro scales. Specifically, the use of macro-block 
LA has been identified as a practical and valuable tool for the rapid 
assessment of the collapse load of pre-identified failure mechanisms 
[30–32]. More recently, algorithms that identify the most appropriate 
collapse mechanisms, taking into account the interlocking effects of 
orthogonal walls, have been incorporated into user-defined analysis 
routines within this framework [33–37]. Similarly, meta-heuristic ap-
proaches (i.e. Genetic Algorithms) have been proposed as a tool to 
explore the value of loads associated with considered collapse mecha-
nisms [38]. 

The first comprehensive study collecting the most recurring out-of- 
plane failure mechanisms for ordinary buildings in historic centres has 
been proposed in [34], with LA formulations for the ultimate loads ac-
counting for regular masonry patterns and the frictional resistance 
contributions. This formulation, based on the upper bound limit analysis 
theorem, has been upgraded in [39], with a revisited evaluation of the 
in-plane frictional forces for the rocking-sliding mechanisms and the 
torsion-shear-flexure interactions for the horizontal flexure mecha-
nisms. Even deserving some merit, the main weakness of such formu-
lations relies on the inability to account for non-periodic masonry 

patterns, which affects most of the URM made with stones having 
different dimensions and arranged according to non-periodic patterns. 
To cover this research gap, a novel equation for determining the 
maximum angle of crack inclination in masonry walls with non-periodic 
textures has been presented in [40,41]. The equation incorporates the 
calculation of frictional resistance at the interface of macro-blocks, 
utilising two masonry quality indexes, i.e. vertical and horizontal lines 
of trace. Such a solution to determine the contribution of the frictional 
resistance generated by irregular masonry patterns was integrated 
within the macro-block limit analysis formulations originally proposed 
in [39], and then validated against comparisons with advanced DEM 
simulations and existing numerical results referred to single-nave ma-
sonry churches [42]. On the other hand, the existing literature on 
macro-block LA tools has predominantly focused on parametric studies, 
where physical parameters such as frictional resistance, panel or unit 
aspect ratio, and others were qualitatively assessed [41,43,44]. How-
ever, the dearth of comprehensive investigations that statistically eval-
uate data these analytical methods might generate in no time is worth 
noting. 

In order to address this knowledge gap, the present study aims to 
adopt the model originally implemented by Casapulla et al. [39] and 
Funari et al. [40] to perform a factorial parametric analysis by consid-
ering different uncertainties, such as geometry, quality of the masonry 
pattern and mechanical parameters. Although the proposed analysis is 
easily extendable to any failure mechanism, it specifically focuses on the 
façade compound rocking failure of single-nave masonry churches. One 
should note that the assumption of the predefined failure mode could 
lead to erroneous evaluation for some of the considered structural 
configurations since another failure mode might be affected by lower 
strength capacity and thus cause the onset of the mechanism for a lower 
value of the horizontal action. The proposed work ends up with the 
simulation of different scenarios affected by limited knowledge of these 
model parameters to assess their influence and trace conclusions 
regarding the direction engineers must push to achieve a reliable and 
not-too-conservative seismic assessment. Hence, this work incorporates 
a macro-block LA model based on the upper bound theorem of LA [37, 
40,41,44], with the methodology detailed next:  

1. Definition of a parametric dataset considering both geometrical and 
material parameters, typically incurred for single-nave masonry 
churches.  

2. Theoretical background and numerical implementation of the 
macro-block LA formulation, accounting for different masonry 
patterns.  

3. Use of the analysis of variance (ANOVA) to investigate one-way and 
two-way factor interactions for each parameter to assess how it af-
fects the horizontal load multiplier, pivot point location and failure 
mode, i.e. sliding/rocking mechanism.  

4. Understanding the correlation between different response measures 
and the input parameters.  

5. Performing an investigation to analyse the impact of uncertainties 
associated with the macro-block LA formulation. 

The paper is divided as follows. Section 2 presents the methodology 
adopted, particularly the definition of the parametric dataset, a sum-
mary of both the macro-block limit analysis formulation for non- 
periodic masonry patterns and the adoption of the ANOVA. Section 3 
discusses the results of the parametric investigation, and the correlations 
between the chosen response measures and ANOVA plots are analysed 
by adopting one-way and two-way plot interactions. Additionally, a 
subsection simulates different scenarios where model parameters are 
considered uncertain. Finally, relevant conclusions are drawn in Section 
4. 
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2. Methodology 

This section presents the methodology employed for conducting the 
numerical study. Initially, a literature survey has been conducted to 
gather the most common physical characteristics of the structural 
benchmarks for single-nave masonry churches. Subsequently, these data 
have been utilised to generate a parametric dataset comprising nine 
physical variables. 

Next, a summary is presented on the macro-block LA formulation for 
the compound rocking mechanism, in its version initially introduced in 
[39] and later updated to account for non-periodic masonry arrange-
ments [40]. Additionally, specific details are provided regarding the 
numerical implementation of this formulation. Furthermore, an addi-
tional subsection briefly mentions the ANOVA, which has been 
employed to compare variances among the means of the aforementioned 
physical variables used to generate the numerical dataset. For the sake of 
clarity, a semantic representation of the implemented workflow is rep-
resented in Fig. 1. 

2.1. Parametric dataset 

The geometrical dimensions of the structural benchmarks have been 
modelled by using a database of single-nave masonry churches present 
in the centre of Italy [42]. Five parameters define the church geometry 
as presented in Fig. 2a, where the different values have been adopted 
from [42] (Table 1). 

Two mechanical parameters represent the friction coefficient be-
tween masonry units and the specific weight of the masonry. Their 
values correspond to recommendations found in the literature and 
encompass a large selection of possible masonry typologies. All the 
geometrical dimensions characterising the structural benchmarks are 
expressed as a ratio with respect to the sidewall height. In addition, one 
parameter considers different vertical overload forces on the sidewalls 
(Fig. 2a), considering different possible roof structure configurations. 
Finally, a geometric masonry quality index proposed by Funari et al. 
[40] characterises the quality of the sidewalls’ masonry pattern. The 
parameter values have been selected to range from very poor to very 
good quality masonry patterns. A factorial dataset with 9 input param-
eters, each of them discretised in 5 values, has been generated (Table 2), 
resulting in 1,953,125 combinations, to encompass all the possible 
combinations of church geometries, mechanical, loading and masonry 
texture quality parameters. In the last column of the table, the param-
eters’ ranges are disclosed as R = (max − min)/(2⋅mean)[%]. The 
overload is associated with the widest range of ± 100 %, while the 
specific weight is the narrowest with ± 10.5 %. 

2.2. Macro-Block LA Formulation 

Compound rocking failure mechanism happens if the connection 
between the façade and sidewalls is strong, i.e. the predominant failure 
mechanism is identified as a rocking motion of a part of the façade 
connected with a portion of the sidewalls around a horizontal cylindrical 
hinge (Fig. 2). In the following, the seismic response of the masonry 
structure is simulated by a system of horizontal (overturning) mass 

proportional forces, which, albeit disregarding dynamic effects (which is 
common practice for engineers working on seismic assessment projects), 
and provides an acceptable estimation of the seismic behaviour. 

The equilibrium of the moving macro-block can be written by 
imposing the overturning equilibrium about the pivot point identified as 
O in Fig. 2b. The external work contains both the overturning and the 
stabilising works performed by the self-weight of the façade, the part of 
the sidewalls involved in the failure mechanism (triangle ABC) and the 
overload q imposed on the segment BC. In contrast, the internal work is 
derived from the friction forces at contact interfaces identified by the 
angle αb and according to the approach developed in [39], in which the 
actual frictional forces computation has been derived: 

Wext = λ⋅
(
Wf ⋅dO,f + 2⋅WABC⋅dO,ABC + 2⋅QBC⋅dO,QBC

)
−

−
(
Wf ⋅dS,f + 2⋅WABC⋅dS,ABC + 2⋅QBC⋅dO,QBC

)

Wint =
(
2⋅Fg,ABD⋅dS,Fg,ABD + 2⋅Fq,BD⋅dS,Fq,BD

)
⋅
(

1 −
αc

αb

)

with :

QBC = q⋅ts⋅(Hs − ZO)⋅ tan(αc)

Fg,ABD = WABD⋅μf

Fq,BD = q⋅ts⋅
(
Hs − ZO

)
⋅ tan(αb)⋅μ

(1)  

Where λ is the load factor and W are the self weights of the façade and 
the sidewalls involved in the failure mechanism, while F are the fric-
tional resistances due to the number of the bed joints crossed by the 
crack line in the sidewalls and the overloads on them (QBC), according to 
the methodology reported in [39,40].dO, and dS, are the overturning 
and stabilising arms with respect to the pivot O. 

As represented in Fig. 2b, αc is the actual crack inclination, which 
defines the geometry of the sidewall involved in the failure mechanism, 
and αb is the crack inclination upper threshold (which depends on the 
geometry of the units) [39]: 

tan(αb) =
v
h

(2)  

here, v and h are half-width and height of the masonry units, respec-
tively. 

Hence, the horizontal load multiplier can be evaluated by equating 
external and internal virtual work and solving for λ, as in Eq. (1). Ac-
cording to the upper bound theorem of LA, the computation of the 
horizontal load multiplier requires the solution of a constrained mini-
misation problem, in which the parameters defining the failure mech-
anism geometry, i.e. αc and ZO, are adopted as variables to explore all the 
panorama of possible solutions: 

minimise : λ
subject to : ZO ≤ HS

αc ≤ αb

(3)  

where ZO is the height position of the pivot point and HS is the total 
height of the sidewalls, as shown in Fig. 2. 

It is important to note that while the horizontal multiplier and failure 
mechanism geometry results are pretty accurate, such analytical 

Fig. 1. Semantic representation of the implemented workflow.  
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formulation presented in [39] is limited to regular masonry patterns 
composed of units of the same size regularly arranged (running pattern). 
This greatly restricts the applicability of macro-block LA. To address this 
limitation, the formulation for the frictional resistance was recently 
redefined in [40] in order to eliminate its dependence on the unit aspect 
ratio. This was achieved by introducing a geometric masonry quality 
index, which can be surveyed by inspecting a representative masonry 
pattern window (RMPW), usually 1.00 × 1.00 m2 (see Fig. 3). A more 
extensive survey would result in a more accurate prediction of αb, but 
inevitably increasing intrusiveness and costs. Hence, instead of 
computing the upper threshold for the crack inclination referring to the 
entire wall or referring to the single unit aspect ratio, it was proposed to 
refer to an RMPW and calculate αb accordingly: 

tan(αb) =

∑nc

i=0
vi

∑nc+1

i=0
hi

(4) 

It is worth remarking that, in this case, nc refers to the number of 
courses inside the RMPW. 

At this stage, the traced polyline inside the RMPW can be adopted to 
define a masonry quality index(see Fig. 3a, first column). Such a ma-
sonry index (MUR

l ) is the ratio between the length of the magenta line 
traced only through mortar joints following the structured path UP- 
RIGHT (vUR

l ) and the height of the RMPW (Hw) reading to: 

MUR
l =

vUR
l

HW
(5) 

However, such a path could be not practical in some cases since it might 
require a very wide RMPW to connect the upper and the lower edges. 
Therefore, within the scope to make such a formulation more appealing for 
real case studies, and consequently taking into account that in some situ-
ations, it is necessary for the plaster removal to inspect the masonry 
pattern, an alternative masonry index, i.e. following a structured path UP- 
RIGHT-UP-LEFT, was proposed (see Fig. 3a, second column): 

MURUL
l =

vURUL
l

HW
(6) 

When regular masonry characterises the structure under investiga-
tion, MURUL

l provides the same evaluation than MUR
l as well as that of the 

Fig. 2. (a) Geometrical representation of the structural benchmark; (b) Limit analysis variables representation.  

Table 1 
Single-nave church geometries, adopted in [42].  

Church Facade Sidewall Ratios 

Lf tf Hf Ls ts Hs Lf/Hs tf/Hs Hf/Hs ts/Hs 

[m] [m] [-] 

Sant’Andrea in Stiffe  8.60  0.70  8.15  6.00 0.70  6.80  1.26  0.10  1.20  0.10 
Santa Maria degli Angeli  10.0  0.70  10.0  4.30 0.50  8.80  1.14  0.08  1.14  0.06 
Santa Maria ad Cryptas  10.2  0.86  9.50  7.40 1.00  7.90  1.29  0.11  1.20  0.13 
Santa Maria del Presepe  15.15  1.00  17.5  5.75 1.00  14.33  1.06  0.07  1.22  0.07 
San Paolo ad Peltuinum  8.00  1.07  9.60  5.50 0.80  8.80  0.91  0.12  1.09  0.09 
San Sisto  9.95  0.75  13.3  4.70 1.40  10.40  0.96  0.07  1.28  0.13 
Santo Stefano  7.00  0.70  7.70  5.50 0.60  6.00  1.17  0.12  1.28  0.10      

Min.  6.00  0.91  0.07  1.09  0.06      
Max.  14.33  1.29  0.12  1.28  0.13      
Avg.  9.00  1.11  0.10  1.20  0.10  

Table 2 
Parametric analysis design: parameter values.  

Sidewall height Hs [m] [6.00;8.00; 10.00;12.00;14.00] 40 % 
Façade-to-sidewall height ratio Hf/Hs [ − ] [1.00;1.075; 1.15; 1.225;1.30] 13 % 
Façade span-to-sidewall height ratio Lf/Hs [ − ] [0.90;1.00; 1.10; 1.20;1.30] 18.2 % 
Façade thickness-to-sidewall height ratio tf/Hs [ − ] [0.06;0.775; 0.095;0.1125;0.13] 36.8 % 
Sidewall thickness-to-sidewall height ratio ts/Hs [ − ] [0.06;0.775; 0.095;0.1125;0.13] 36.8 % 
Friction coefficient μf [ − ] [0.50;0.60; 0.70; 0.80;0.90] 28.6 % 
Masonry pattern quality MURUL

l [ − ] [1.10;1.50; 1.90; 2.30;2.70] 42.1 % 
Overload q [kN/m2] [0.00;0.50; 1.00; 1.50;2.00] 100 % 
Specific weight γ [kN/m3] [17.00; 18.00; 19.00;20.00;21.00] 10.5 %  
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lines of the minimum trace (Mmin
l ), as defined in [45,46] (see Fig. 3a, 

third column). On the contrary, when the masonry pattern is coherent 
with Fig. 3b, the use of the line of minimum trace will provide a lower 
value with respect to MUR

l , since the algorithm will search at each node 
the shortest path to connect the upper and lower edges of the RMPW. 
Instead, the structured path UP-RIGHT-UP-LEFT (MURUL

l ) removes the 
underestimation generated by the use of the classical definition of the 
line of minimum trace (Mmin

l ), providing an assessment very close to MUR
l . 

Moreover, since both paths, i.e. UP-RIGHT-UP-LEFT and UP-RIGHT, are 
pre-assigned, when the algorithm has to trace along the horizontal di-
rection, there is a 50 % chance of following the shortest or longest side, 
resulting in the case of an appropriate number of courses 
consideredMUR

l ≃ MURUL
l . 

In order to clarify these remarks, a synoptic representation of the 
values assumed by MURUL

l and Mmin
l is sketched in Fig. 3b with respect to 

the reference path UP-RIGHT (MUR
l ) for coursed squared masonry. 

Referring to both regular and coursed squared masonry, MURUL
l can be 

defined with the following equation [41]: 

MURUL
l =

∑nc

i=0
vi

∑nc+1

i=0
hi

+ 1 (7)  

where ncis the number of courses, vi and hi are the horizontal interface 
length and height of the units traced at the specific course. 

Therefore, by assuming the equivalence between MURUL
l and MUR

l (see 
Fig. 3b) it is possible to substitute Eq. (7) into Eq. (4) and solve for 
tan(αb): 

tan(αb) =
(
MURUL

l − 1
)

(8) 

In [40], a proposal was even reported to compute the crack inclination 
upper threshold in the case of horizontal bed joint absence. This paper does 
not examine such a case, though it can be treated in the same framework as 
reported in [40]. As follows, the quality of the masonry patterns and their 
capability to generate frictional resistance will be defined by the definition 
of the parameter αb, which, as reported in Eq. (8), is a function of the 
geometrical masonry index defined in [40], i.e. MURUL

l . 

2.3. Algorithm description 

This section presents the numerical implementation of the above 
described macro-block LA formulation according to [36,40], which has 
been performed in the Java programming language in an object-oriented 
manner, encapsulating functionalities into separate objects, each having 
its own properties and methods (Fig. 4). Even though the program’s 
main components are analogous to the ones reported in [27], the 
object-oriented structure facilitates further extension to multiple failure 

mechanisms. Furthermore, this implementation’s computational per-
formance is considerably better than the one in [36], simulating close to 
2,000,000 scenarios around 11 s 

The program’s first component creates a church geometry object 
containing relevant information concerning geometry, pattern, loading 
and mechanical parameters. Furthermore, it has functionalities related 
to calculating the geometrical characteristics of the failure mechanism 
as a function of the variables. The second component defines the ge-
ometry of the macro-block in an object, containing three parameters, 
namely the crack inclination (αc) and pivot point height (ZO) and the 
church geometry. The second and third components are demanded to 
compute the load factor by assuming the parameter contained in the 
macro-block object as a variable of the problem. This functionality is 
included in the objective function object, where the return value is the 
load factor. In order to solve the minimisation problem of Eq. (3), the 
Nelder-Mead numerical method (NMM) was used in the fifth compo-
nent. This heuristic search method can find the minimum or maximum 
of an objective function in a multidimensional space where the de-
rivatives of the function are not known. The Java library of Michael Hutt 
(2011) nmsimplex.java [source code] http://www.mikehutt. 
com/neldermead.html was used to solve the minimisation problem. 
The NMM object contains an objective function and constraint objects, 
which define the objective of the optimisation task and the variable 
constraints, respectively. The component is connected to parameters 
that define the geometry of the macro-block (crack inclination and pivot 
point height), and the load multiplier is set as the objective function. 

2.4. ANOVA 

The analysis of variance (ANOVA), originally developed by Sir 
Ronald Fisher [47], aims to analyse the differences among means. It 
partitions the total variability into between- and within-group compo-
nents. ANOVA has been extensively adopted in structural engineering to 
assess modelling parameters’ individual and joint effects on the struc-
tural response [41,48], since it facilitates understanding the variability 
sources in a full-factorial dataset. 

In this work, the effect of input parameters on the response measures 
(RM) has been investigated with the ANOVA, where average effects and 
standard deviation are calculated for one parameter (linear factor) and the 
joint effect of two or more parameters (two- or multiple-way factor) as: 

R̄Mi... =
∑b

j=1

∑c

k=1

∑d

l=1
λijklsRMi... =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
⋅
∑b

j=1

∑c

k=1

∑d

l=1

(
λijkl − λ̄i...

)2

√
√
√
√ R̄Mij..

=
∑c

k=1

∑d

l=1
λijklsRMij.. =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
⋅
∑c

k=1

∑d

l=1

(
λijkl − λ̄ij..

)2

√
√
√
√ (9)  

where R̄Mi... and sRMi... are the mean and standard deviation values of a 
response measure for all the cases, when the first input parameter has 

Fig. 4. Flow chart representation of the proposed algorithm.  

Fig. 3. a) Graphical interpretations of the lines of vertical trace (MUR
l , MURUL

l , 
Mmin

l ); b) Qualitative representation of values assumed by the line of vertical 
traces for regular and non-regular patterns. 

S. Szabó et al.                                                                                                                                                                                                                                   

http://www.mikehutt.com/neldermead.html
http://www.mikehutt.com/neldermead.html


Structures 63 (2024) 106385

6

the value of i, while R̄Mij.. and sRMij.. are the mean and standard deviation 
values when the first two input parameters have the values of i and j, 
respectively. A higher difference between the mean response measure 
values, corresponding to subsequent levels of the same input parameter, 
shows the influence of such input parameter on the response. The 
ranges, defined by {P(95) − R̄M, R̄M − P(5)}, represent the interval of 
possible values where the response measure of an individual simulation 
will fall with a 90 % certainty. 

For an easier understanding of the effect of each parameter, ANOVA 
results are plotted in charts, with solid lines signifying the mean values 
and shaded regions indicating the 95 % ranges. Furthermore, the two- 
way interaction effect (Iij) is calculated as: 

Iij. =

⃒
⃒
⃒
⃒
1 − R̄Mij.. −

(
R̄Mi… + R̄M.j.

)

R̄M

⃒
⃒
⃒
⃒⋅100% (10)  

Where R̄Mi… and R̄M.j. are the linear factors and R̄M is the average 
response of all simulations. Iij defines the percentile difference between a 
two-way interaction of a certain response measure and the average of all 
simulations. 

3. Results 

In the context of this research, the variables in Table 2 are selected to 
encompass a wide but realistic range of values, each having different 
ranges (between ± 10.5 % and ± 100 %), which entails that the inter-
pretation of parameter effects should be considered in the context of the 
knowledge of which parameter value is necessary for the proper 
assessment of a structure. Results are interpreted by analysing three 
response measures encompassing the load factor (λ), the relative height 
of the pivot point (ZO/Hs), and the ratio αc/αb, which indicates the type 
of mechanism. The investigation of the first response measure yields 
valuable insights for assessing structural integrity using the force-based 
method. On the other hand, the pivot point’s height and the ratio αc/αb 
offer significant metrics for understanding the regions of the structure 
affected by failure mechanisms. Both ZO/Hs and αc/αb are dimensionless 
with a range between 0 and 1, where 0 denotes a pivot point at ground 
level and sliding failure mechanism, while a value of 1 indicates a pivot 
point at the top of the sidewall and pure rocking failure mechanism, 
respectively. 

In Fig. 5, the distributions of all the response measures are plotted. It 
is worth noting that this encompasses a comprehensive analysis of 59 

(1,953,125) distinct parameter combinations. One can note how the 
load factor distribution is homogeneous, whereas the other two response 
measures are constituted by two distinct behaviours, i.e. a distributed 
one and another at the extremities. The first corresponds to a pure 
rocking failure mechanism, and the second one represents the proba-
bility of occurrence of the pivot point falling at ground level, 
respectively. 

The methodology described in Section 2 is applied to gather valuable 

information concerning one-way and two-way interactions of the un-
certainties and investigates the correlations among response measures. 
Section 3.1 aims to investigate the correlation between the three 
considered response measures. Section 3.2 presents the results of the 
ANOVA, where the influence of parameters on the response measures is 
assessed. Finally, different scenarios in which the incomplete knowledge 
of model parameters, are investigated, and useful remarks regarding the 
most significant model parameters are drawn in Section 3.3. 

3.1. Correlations of the response measures 

In this section, the correlation between the response measures is 
assessed. Fig. 6 shows the type of mechanism’s correlation with the pivot 
point height as a function of the quality of the gable height pattern and 
the sidewall’s masonry. Since the data points are acquired from a full 
factorial dataset, the distribution of response measures represents a 
scenario where all parameter combinations are equally likely to occur. 
Furthermore, the correlation between response measures is defined by 
the functional relationship between them, provided in Eq. (1). 

In case of a very poor masonry pattern’s quality, the type of mech-
anism is always pure rocking, with a pivot point height at the ground 
level (if the sidewall’s capacity to participate in the mechanism is small, 
the response is close to the simple rocking of the façade). As the pattern 
quality increases, the mechanism type changes from rocking to sliding- 
rocking, and the pivot point height shifts higher, which also signifies 
that the sidewall’s participation in the compound rocking mechanism 
increases. A low gable height generally results in a lower pivot point, 
which entails a rocking-like mechanism type. As the gable height in-
creases, both the pivot height and more bed joints tend to slide. In Fig. 6, 
two distinct behaviour types can be identified: pure rocking on the 
leftmost vertical line of the scatter plot and sliding-rocking, rocking 
scattered in the middle of the plot. Considering the sliding-rocking re-
gion, a higher pivot point makes the structure prone to exhibit sliding. 
Finally, a dominantly rocking mechanism (0.8 ≤ αb/αc < 1) is rarely 
encountered. 

Fig. 7 shows the relation between the load factor and the pivot point 
location. Generally, a higher pivot point height signifies higher strength 
capacity in the case of a high gable, while no such trend can be observed 
if no gable is present. A very poor masonry quality always results in the 
lowest strength capacity and a corresponding pivot point at the ground 
level. At higher masonry quality values, both the load factor’s and pivot 
point height’s scatter is increased. 

Finally, Fig. 8 depicts the correlation between the mechanism type 
and the load factor. Again, very poor quality masonry pattern is asso-
ciated with both pure rocking and low load factor levels. If a higher 
quality masonry pattern is employed, fewer structures fail in pure 
rocking and more in the rocking-sliding mechanism. As the masonry 
pattern quality increases, the load factor scatter also grows, with an 
associated shift to a more sliding-like failure mode. The highest load 
factors are associated with either pure rocking or a rocking-sliding 

Fig. 5. Distribution of response measures from the full factorial dataset.  
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failure mode characterised by 0.6 ≤ αb/αc < 0.7. The largest scatter in 
load factors is observed in the case of no gable, while a high gable height 
ensures a more consistent response. 

3.2. ANOVA results 

The significance of each parameter of the ANOVA is assessed through 
a set of visual representations, generating a mosaic of graphs (Fig. 9). 
The graphs on the mosaic diagonal indicate the one-way interaction, 
while those positioned off the diagonal represent the two-way factors 

interactions. For example, in Fig. 9, the highlighted cell represents the 
two-way interaction between the façade span ratio and the quality of the 
masonry pattern. 

It is worth highlighting that the methodology outlined in Section 2.3 
has been executed thrice to incorporate data related to the response 
measures obtained from the macro-block LA formulation, as detailed in 
Section 2.2. 

It should be noted that two factors define the effect of varying a 
parameter, i) the functional relationship between the parameter and the 
response measure and ii) the variability of the parameter. The overall 

Fig. 6. Correlation between the type of mechanism and the pivot point height as a function of a) gable height, b) masonry quality.  

Fig. 7. Correlation of the load factor with the pivot point height as a function of a) gable height, b) masonry quality.  
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effect is thus determined from the co-existence of these two factors when 
performing the ANOVA. In the appendix, a mosaic representation of the 
ANOVA results pertaining to the influence of various parameters on the 
mean and standard deviation of the load factor, ratio αc/αb and height of 
the pivot point, are reported. 

3.2.1. Effect of parameters on the load factor mean and standard deviation 
Table 3 addresses the main findings concerning both one-way and 

two-way interaction when λ = RM. For the sake of brevity, individual 
figures are not presented here but can be found in the appendix. 

The first part of the table shows the input parameters’ one-way effect 
on the response measure’s mean and the scatter’s trend (both the mean 
response and the parameter value have been considered). The symbols 
in the table signify the sign (+ positive, – negative or 0 no effect) and 
intensity (+, ++, +++ in ascending order) of the effect. The second part 
of the table shows the significant interactions between the input pa-
rameters with their corresponding I factors defined in Eq. (10). 

According to Table 3, the load factor is predominantly influenced by 
the gable height (Hf/Hs), and the sidewall’s pattern quality (Ml

URUL). A 
higher gable height reduces the strength capacity because a lower hor-
izontal load factor triggers the gable’s overturning. On the contrary, a 
better quality pattern increases the strength capacity since a larger 
portion of the sidewall participates in the compound overturning 
mechanism of the façade. It should be noted that the masonry pattern 
quality’s influence is greatest at low values when the response ap-
proaches pure rocking and a pivot point near the ground level, while it 
loses its influence the better the quality gets. The scatter’s trend signifies 
that the gable height gains influence on the strength capacity as it gets 
higher, while the pattern quality is more influential at lower values. The 
friction coefficient μf , and the two wall thickness-to-side wall height 
ratios tf/Hs, ts/Hs all have an approximately equal, positive effect on the 
load factor mean, though clearly smaller than of the previous two pa-
rameters. ts/Hs and μf lose significance for higher parameter values, 
while the effect of tf/Hs becomes more pronounced when the façade is 
thicker. If tf/Hs increases, a smaller portion of the sidewalls will be 
involved in the mechanism, resulting in simple rocking of the façade that 
dominates the response. On the contrary, if ts/Hs increases, the signifi-
cance of other parameters such as μf and Ml

URUL, becomes significant. 
Lf/Hs and q tend to slightly reduce or increase the strength capacity, 
respectively, while all the other parameters have small, negligible ef-
fects on both the load factor mean and scatter. All the factor effects are 
approximately linear, except Ml

URUL, whose inclination reduces with 
higher parameter values. This shows that even a moderate quality ma-
sonry pattern tends to increase strength capacity compared to poor 
quality, while the difference between moderate and good quality ma-
sonries is less pronounced. 

Considering two-way interactions, Ml
URUL and Hf/Hs have significant 

Fig. 8. Correlation of the load factor with the type of mechanism as a function of a) gable height, b) masonry quality.  

Fig. 9. Schematic representation of the ANOVA mosaic.  
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interaction effects with the other input parameters, except Hsand γ.  
Fig. 10a shows the most significant two-way interactions of the two 
dominant parameters. One can note how a low-quality pattern reduces 
the gable height’s effect, and a high gable reduces the pattern quality’s 
effect on the mean load factor. Fig. 10b shows the two-way interactions 
with the sidewall thickness, where its effect is most evident at the 
extreme values of Ml

URUL and minimal at the middle values. Further-
more, the façade thickness is shown to have minimal effect if a high 
gable is present, but its influence increases at lower gable heights. 
Fig. 10c shows the two-way interactions in regards to ts/Hs (similar 
relation is true for μf ), where the parameter’s effect is more pronounced 
at high Ml

URUL and low Hf/Hs values and almost close to zero at the other 
end of the range. Finally, Fig. 10d shows the interaction plot with μf , 
where a similar observation can be made as referred to ts/Hs. 

The load factor assessment is highly influenced by a proper definition 
of the gable height and the sidewall’s masonry pattern quality. The ef-
fect of these two parameters is closely related to the other geometrical 
and mechanical parameters of the structure; namely, the façade thick-
ness primarily influences the effect of the gable height, while the ma-
sonry pattern is by the sidewall thickness. On the other hand, the 

overload, sidewall height, and specific weight of the masonry only have 
negligible effects on the load factor. 

3.2.2. Effect of parameters on the type of mechanism αc/αb mean and 
standard deviation 

Table 4 addresses the main findings concerning both one-way and 
two-way interaction when the type of mechanism αc/αb is the response 
measure. Similarly to the load factor, the most dominant parameter 
influencing the type of mechanism is Ml

URUL. Low-quality masonry results 
in pure rocking (αc/αb=1), while higher-quality masonry leads to a more 
complex mechanism that involves both rocking and sliding. Grater values 
of Hf/Hs make the structure more prone to sliding, resulting in a smaller 
involvement of the sidewalls associated with a lower capacity. A higher 
gable height is also associated with higher scatter; thus, the gable height is 
most influential at low values. The friction coefficient μf has a similar 
magnitude but opposite effect if compared to Hf/Hs. As expected, a higher 
friction coefficient results in a mechanism closer to pure rocking. 

However, a constant scatter is associated with μf , showing the sig-
nificance of this parameter does not change with its magnitude. All the 
other parameters have negligible influence on the mean of the mecha-

Table 3 
One- and two-way interaction effects on the load factor mean and standard deviation.   

Linear effect Significant two-way interactions  

Mean Standard dev. with Hs Hf/Hs Lf/Hs tf/Hs ts/Hs μf Ml
URUL q γ 

Mean Param. value 

Hs – Const. Const. -         
Hf/Hs – – – +++ – – –  -        
Lf/Hs – + –  2.5% -   Sym.    
tf/Hs ++ – – – –  10%  -      
ts/Hs ++ ++ ++ 5%   -     
μf ++ ++ ++ 5%    -    
Ml +++ +++ +++ 20% 5% 5% 10% 5% -   
q + + + 5% -  
γ 0 Const. Const.         -  

Fig. 10. Two-way interaction of input parameters against the load multiplier.  
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nism type, while the façade span-to-side wall height and wall thickness- 
to-side wall height ratios somewhat affect the scatter. 

Fig. 11 shows the significant two-way interactions between the input 
parameters. Again, Ml and Hf/Hs have two-way interactions with most 
of the other parameters. Fig. 11a shows how low-quality masonry 
pattern drives to pure rocking response and reduces the influence of the 
gable height, while high-quality masonry behaviour increases the 
amount of joints sliding, and it is influenced by Hf/Hs. Fig. 11b and c, 
show the interactions with tf/Hs and ts/Hs, respectively. Considering the 
interactions with Ml

URUL, the wall thickness-to-side wall height ratios’ 
effect is close to zero at Ml

URUL = 1.10 and 2.30. At Ml
URUL = 2.30 the 

sign of the effect changes, from positive to negative and vice versa. 
Considering the interactions with Hf/Hs, the wall thickness-to-side wall 
height ratios’ effect is zero at the middle value (Hf/Hs = 1.15) and 
linearly increases to the extreme values of the variable. Finally, Fig. 11d 
shows the interactions with μf , where its effect is most pronounced at 
medium values of Ml

URUL and reduces at the extreme values. The 
interaction with Hf/Hs is not significant, as the lines are parallel to each 
other; thus, the response can be decomposed to the linear effects of the 
input parameters. 

Thus, when the type of the failure mechanism is to be assessed, the 
gable height and the sidewall’s masonry pattern quality serve as the best 
indicators. The effect of these two parameters is again closely related to 
each other. Furthermore, the pattern quality’s influence is also signifi-
cantly influenced by the friction coefficient and the facade thickness. 

3.2.3. Effect of parameters on the pivot point height mean and standard 
deviations 

Analogously to the previous sections, Table 5 summarises the main 
findings concerning both one-way and two-way interactions when the 
pivot point height is the response measure. Repeatedly, Ml

URUL and 
Hf/Hs are the most significant parameters, with the addition of tf/Hs. As 
stated above, poor-quality masonry patterns guarantee a pivot point 
close to the ground, while a good-quality pattern results in a higher pivot 
location and more scattered results. This was expected, as the sidewall’s 
ability to participate in the compound rocking is clearly influenced by 
Ml

URUL. The gable height increases the pivot point height because a 
thicker façade results in a lower pivot point. Contrary to the observa-
tions on the type of mechanism, other small but non-negligible effects 
include the façade span, which increases the façade’s weight and tends 
to place the pivot point closer to the ground. Furthermore, a thicker 

Table 4 
One- and two-way interaction effects on the type of mechanism mean and standard deviation.   

Linear effect Significant two-way interactions  

Mean Standard dev. With Hs Hf/Hs Lf/Hs tf/Hs ts/Hs μf Ml
URUL q γ 

Mean Param Value 

Hs 0 Const. Const. -         
Hf/Hs – – – – ++ -        
Lf/Hs 0  –  2.5% -    Sym.   
tf/Hs 0  – –  5%  -      
ts/Hs 0  ++ 5%   -     
μf ++ Const. Const.  2.5%  5% 2.5% -    
Ml – – – – – ++ 15% 2.5% 10% 5% 20% -   
q + Const. Const.       2.5% -  
γ 0 Const. Const.         -  

Fig. 11. Two-way interaction of input parameters against the type of mechanism.  
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sidewall or higher friction coefficient increases the sidewalls’ partici-
pation in the mechanism and the pivot point height. The other param-
eters have negligible effect on the pivot point height. 

Fig. 12 depicts the most significant two-way interactions between the 
input parameters. Fig. 12a shows how a low-quality masonry pattern 
guarantees a pivot point height at ground level. 

Instead, as the pattern quality increases, the effect of the gable height 
becomes more significant. If Ml

URUL is between 1.9–2.7, the two vari-
ables seem to be uncorrelated. Fig. 12d depicts that while the interaction 
of tf/Hs and Ml

URUL is very strong, only loose connection is observed with 
Hf/Hs, as can be seen from the almost parallel curves. Finally, Fig. 12c 
and d show that the μf and ts/Hs effects’ are negligible in case of poor 
quality masonry or no gable. 

Finally, when assessing the pivot point height, gable height and the 
masonry pattern quality have shown the most significance; however, for 
this response measure, the façade thickness also has a very strong effect. 
Their effect is dominantly influenced by each other and the façade 
thickness. 

3.3. Treatment of uncertainty due to incomplete knowledge 

The preceding section examined the impact of all nine quantitative 
parameters under the premise of possessing complete knowledge, 
wherein their precise values are known. This ideal circumstance would 
never be attainable in practical applications. In such scenarios, struc-
tural engineers face challenges in making decisions to optimise in-
vestments to acquire adequate knowledge of various model parameters, 
leading to a more refined structural assessment. 

To this end, the effect of incomplete knowledge (limited survey) is 
investigated by selecting basic random variables and calculating the safe 
(conservative) response measure values based on the available incom-
plete knowledge. One should note that the intrinsic/spatial variability of 
the parameters has not been considered, assuming the results of macro- 
block LA simulations to be perfectly accurate in the knowledge of the 
“true” model parameters. 

In the current analysis, the masonry pattern quality (Ml
URUL) and 

friction coefficient (μf ) have been modelled as random variables, 
considering the difficulty and high cost of their survey and their sig-
nificant influence (shown in Section 3.2) on the response measures. In 

Table 5 
One- and two-way interaction effects on the pivot point height mean and standard deviation.   

Linear effect Significant two-way interactions  

Mean Standard dev. With Hs Hf/Hs Lf/Hs tf/Hs ts/Hs μf Ml
URUL q γ 

Mean Param. Value 

Hs 0 Const.  -         
Hf/Hs +++ +++ +++ 2.5% -        
Lf/Hs – – Const. Const.  5% -    Sym.   
tf/Hs – – – ++ – –  15%  -      
ts/Hs ++ + + 15%  2.5% -     
μf ++ + + 5%  2.5% 2.5% -    
Ml +++ +++ +++ 20% 5% 20% 20% 5% -   
q – Const. Const.  5%     2.5% -  
γ 0 Const. Const.         -  

Fig. 12. Two-way interaction of input parameters against the pivot point height.  
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contrast, the overload (q) and the church geometry have been selected as 
deterministic variables. Concerning the latter, 16 church geometries 
have been defined, according to Fig. 13, to encompass a wide spectrum 
of realistic cases. Each geometrical parameter corresponds to the lower 
or upper bound of the range of values defined in Table 2. 

In order to accurately predict the distribution of the response and, 
thanks to the high computational efficiency of the macro-block LA too, 
for each combination of the two deterministic variables, n = 8,000 
sample size has been selected where the values of the random variables 
have been randomly selected from a normal distribution, according to 
Eq. (11). One should note that the sample size has been selected so the 
coefficient of variation of the sample mean is smaller than 5 %. 

X =
{

x|x ∼ N
(
μ, σ2)}, |X| = n

μ = (rmax − rmin)/2
σ = (rmax + rmin)/6

(11)  

where μ signifies the mean and σ the standard deviation of the distri-
bution, while rmin and rmax are the lower and upper bounds of the pre-
defined range of values from Section 2.1, and n denotes the number of 
samples from the distribution. As a first assumption, both variables (i.e. 
masonry pattern quality (Ml

URUL) and friction coefficient (μf )) have been 
selected as normally distributed. Such an assumption was supported by 
studies taken from the literature [49,50]. However, as extensively re-
ported in the literature [51], the distribution choice might significantly 
affect the results; thus, further studies should include more emphasis on 
data selection to accurately describe the population of input parameters. 
Furthermore, this distribution definition provides that the samples will 
fall into the predefined range with 95.44 % certainty because rmax and 
rmin are defined ±2 standard deviations away from the mean. It should 
be noted that these distributions aim to encompass all the possible 
parameter values in real structures (which value is unknown due to lack 
of survey), and not the possible random variation in a specific structure, 
e.g. the distribution of friction coefficients represents all possible types 
of masonry types with their differences in terms of friction coefficients. 

Fig. 14 shows the distributions of response measures for the struc-
tural benchmark with gable and no overload. For each plot, the results 
are grouped in two ranges by Ml

URUL, i.e.{1.1, 2.1} bad and {2.1, 2.7} 
good quality masonry pattern. Considering the load factor, generally, a 
long left tail characterises the response in case of a bad masonry pattern, 
while the dispersion of results for good quality masonry is much lower. 
As expected, a better quality pattern results in higher load factors; 
although there is some overlap between the two distributions, a lower 

dispersion of results can be observed in the case of thin sidewall thick. 
Such a result was expected since all the considered uncertainties are 
intrinsic to the sidewall; thus, the more it participates in the response, 
the larger the distribution scatter is. Considering the type of mechanism, 
the results for good and bad quality masonry always overlap, with bad 
quality masonry having larger dispersions and more pronounced 
rocking-like failure mechanisms. Finally, analogous observations can be 
made on the relative pivot point height as the load factor. Two outliers 
are geometry c) and d), where the majority of pivot points are concen-
trated at the ground level. The results demonstrate how the masonry 
quality clearly affects structural assessment prediction; hence, even an 
approximate survey of Ml

URUL leads to a more refined structural 
assessment. Fig. 15 shows the distributions of response measures for the 
structural benchmark without gable and no overload. 

Considering the load factors, contrary to the cases with gable, the 
scatter in response between good and bad quality masonry patterns is 
quite uniform, whereas the mean value of good quality masonry has a 
higher value. Furthermore, the overlap between the two distributions is 
greater than in the cases with gable. Considering the type of mechanism, 
the results from bad and good-quality patterns are more comparable 
than in the cases with gable, though bad-quality masonry has a higher 
likelihood of pure rocking response. Finally, considering the pivot point 
height, similar observations can be made for the cases with gable. One 
notable difference is that almost all the responses are associated with a 
ground-level pivot point in a thick sidewall. 

Upon analysing Fig. 14, it becomes evident that the extremely left-
ward values of the distributions would sometimes result in an exces-
sively conservative structural assessment. To address this concern, lower 
(P5) and higher (P95) estimated values, which represent the 5th and 
95th percentiles of the distribution, have been taken into account. These 
two values establish a range within which the response measure will 
likely fall with a 90 % confidence level, ensuring clarity in the 
assessment. 

With the structural assessment purpose, if one refers to the sole load 
factor (λ), the lower (P5) value is of practical importance, defining the 
design load factor. Hence, to calculate the reduction factor (λrd) due to 
incomplete knowledge, the design value is normalised by the mean 
value of the distribution (λ̄) and this ratio is subtracted from 1 as follows: 

λrd = 1 −
P(5)λ

λ̄
(12) 

From its definition, it results that λrd = 0 means no reduction, while 
λrd > 0 signifies increasing reductions, and as a consequence, need to 
obtain better knowledge of the model parameters to refine the structural 
prediction. 

In Fig. 16, the church geometries are sorted in ascending order from 
the lowest to the highest reduction factor. The façade thickness has the 
highest significance. The geometries with a thicker facade are all located 
on the figure to the left. Structural benchmarks on the figure to the right, 
with a thin façade, exhibit larger reductions ranging from 24 % to 47 %, 
while those on the left, with a thick façade, only exhibit smaller re-
ductions between 10 % and 26 %. This result was expected since all the 
uncertainties in the analysis concern the sidewall; if the façade is thick 
compared to the sidewalls, it controls the behaviour of the structure, 
corresponding to smaller uncertainties in the assessment and, thus, 
smaller reductions. Such results underline the importance of an accurate 
geometrical survey that includes the definition of the façade thicknesses. 
An additional observation relates the structural benchmarks with a 
gable populating the middle part of the figure, demonstrating how the 
gable effect can increase or decrease the reduction factor if thin or thick 
facades are considered, respectively. 

Furthermore, the presence of a gable results in a quasi-constant 
reduction value between 20 % and 32 %. This is because gable over-
turning is the most likely mechanism, resulting in comparable results 
between the different church geometries. Moreover, the façade span 
seems to decrease the reductions for thick façade structural benchmarks Fig. 13. Considered single-nave church prototypes.  
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Fig. 14. Distribution of the load factors for the masonry structural benchmark with gable, for q = 0 kN/m2.  
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Fig. 15. Distribution of the load factors for the masonry structural benchmarks without gable, for q = 0 kN/m2.  
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while increasing for those with thin façade. In almost all the cases, the 
overload level increases the reduction factors, but it accounts for only 7 
% difference in the most extreme case. Finally, the sidewall thickness 
also appears to have only a minor effect on the reduction compared to 
the other variables. These results are obviously dependent on the 
selected distributions for the random variables, which try to encompass 
the range of possible values in real HMS. 

Furthermore, two additional response measures have been analysed, 
i.e. the pivot point height (ZO/Hs) and the type of mechanism (αc/αb), 
since such information can provide valuable help to aid the strength-
ening design as well as for the placement of sensors within the scope of 
structural health monitoring. For the sake of representation, the range 
between P5 (lighter colours) and P95 (darker colours) is considered in 
both Fig. 17 and Fig. 18. 

In Fig. 17 the ranges for the type of mechanism are represented. Even 
in this case, the façade thickness splits the geometries into two halves. 
For the eight structural benchmarks with a thin façade, the ratio αc/αb 
ranges from 0.50 to 1.0, meaning that the distributed sliding across the 
sidewall is limited to 0.50, and in some cases, the failure mechanism 
may be affected by pure rocking (αc/αb = 1) is limited. On the last right 
column of Fig. 17, the structural benchmark with thin walls, a long 
façade span, and no gable under high overload may exhibit a pure 
rocking mechanism (αc/αb = 1). 

On the other hand, the two configurations on the extreme right side, 
exhibiting thick façade structural benchmarks with large spans and 
without gable, can potentially incur a failure mechanism characterised 
by a value αc/αb ranging from 0.0 to 1.0. These two geometrical con-
figurations are the ones affected by the highest level of αc/αb uncer-
tainty. The other geometrical configurations with thick façade have an 
increasing lower bound (from 0.2 to 0.4) and a nearly constant upper 
limit (0.7). Finally, for structural benchmarks with gable, the overload 
has little effect; however, in the absence of a gable, overload signifi-
cantly influences the lower bound for thin facades and the upper 

boundary for thick facades. 
In Fig. 18 the ranges of the pivot point height are reported. As it is 

represented, in this case, the geometrical configurations have been 
sorted differently by using sorting parameters from the lowest to the 
highest of the pivot point height. It should be noted that the geometrical 
configurations with thin façade and gable can only exhibit pivot points 
very close to the foundation. The following eight structural benchmarks 
all have close to zero lower limits while the upper limit increases from 
30 % up to 70 % of the sidewall height. Between these eight structural 
benchmarks, it appears complex to identify one or more factors that can 
control the geometrical configuration order. 

On the other hand, the last four structural benchmarks (on the right 
side of Fig. 18) all have no gable and thick façade. Their response is 
characterised by a higher lower limit, if compared to the other config-
urations, ranging from 35 % to 70 % of the sidewall height, while the 
corresponding upper limit values have a consistent value ranging from 
75 % to 90 %. One should note that the overload significantly affects the 
structural benchmarks with a thin façade, reducing the upper limit by up 
to 40 %. On the contrary, in the cases of thick façade structural bench-
marks, the overload seems to have minimal effect. 

4. Conclusion 

A parametric study has been conducted to investigate the effect of 
incomplete knowledge on the seismic assessment of single-nave ma-
sonry churches, with reference to the compound rocking failure mech-
anism of the façade. The geometrical dimensions of the structural 
benchmarks have been modelled by using a database of single-nave 
masonry churches present in the centre of Italy. Hence, a factorial 
dataset with 9 input parameters, each discretised in 5 values, has been 
generated, resulting in about 2 million combinations, encompassing all 
the possible combinations of church geometries, mechanical, loading 
and masonry texture quality parameters. The effect of input parameters 

Fig. 16. Reduction of load factor in the case of incomplete knowledge of the line of minimum trace and friction coefficient.  

Fig. 17. Range of failure mechanism type in the case of incomplete knowledge of the line of minimum trace and friction coefficient.  
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on the response measures has been investigated using ANOVA. 
Afterwards, the effect of incomplete knowledge (limited survey) was 

investigated by selecting basic random variables and calculating the safe 
(conservative) response measure values based on the available incom-
plete knowledge. In the current analysis, the masonry pattern quality 
(Ml

URUL) and friction coefficient (μf ) have been modelled as random 
variables, considering their survey’s challenge, high cost, and significant 
influence on the response measures. 

The novelties of the study are threefold: i) identification of a clear 
understanding of the one-way and two-way parameters affecting the 
seismic performance of compound rocking local failure mechanism, ii) 
assessment of the uncertainties regarding the macro-block LA formula-
tion, and iii) useful guidelines for researchers and practitioners on the 
use of macro-block LA underlining the most relevant parameters to 
survey in order to give more reliability to the seismic assessment of 
single-nave masonry churches. The following points summarise the 
main findings and contributions of the paper:  

• The most significant parameters affecting the structure’s seismic 
response are the masonry pattern quality and the church’s gable 
height. However, significant interaction effects exist between these 
two and the other parameters, each accounting for up to 20 % 
variation in the response measure.  

• Poor masonry quality patterns dominate the response, while other 
parameters become more significant for better masonry pattern 
quality. Similarly, if a high gable is present in the structure, the ga-
ble’s overturning dominates the response, while at lower gable 
heights, other parameters gain significance.  

• Incomplete knowledge of the masonry pattern quality and material 
properties of the sidewalls can lead to significant uncertainties in the 
seismic assessment of single-nave masonry churches. Depending on 
the geometrical characteristics of the structure, the force capacity 
has to be reduced up to 45 % for a safe assessment. Similarly, both 
the type of mechanism and the pivot point’s height are subject to 
high uncertainties.  

• In the context of force capacity, surveying masonry pattern details is 
especially significant for churches without gables and with thin fa-
cades. Conversely, thick facades may require fewer surveys due to 
the relatively low influence of the other parameters.  

• On the contrary, churches with thick facades and no gables exhibit 
high uncertainty in terms of the failure mechanism, necessitating 
additional surveys. Furthermore, a thick façade and the presence of a 
gable ensure a pivot point height close to ground level, while a thick 
façade and no gable result in higher pivot points and increased 
uncertainties. 

One should note how these concluding bullet points do not consider 
some relevant aspects that should be further investigated in future 
research work, such as i) other failure mechanisms like two-way bending 

of the façade or masonry disintegration, ii) p-delta effects, iii) dynamic 
effects, iv) tensile strength and cohesion of masonry, v) ductility of the 
structural benchmark. 

Future developments will involve the parametrisation of other locale 
failure mechanisms to make a complete abacus, which will be adopted to 
consider even other variables causing involvement in other failure 
mechanism types, such as boundary conditions. 
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[1] Lulić L, Ožić K, Kǐsiček T, Hafner I, Stepinac M. Post-earthquake damage 
assessment—case study of the educational building after the zagreb earthquake. 
Sustain 2021;13:6353. https://doi.org/10.3390/SU13116353. 

[2] Ingham J, Griffith M. Performance of unreinforced masonry buildings during the 
2010 Darfield (Christchurch, NZ) earthquake. Aust J Struct Eng 2010;11:207–24. 

[3] Dizhur D, Dhakal RP, Bothara J, Ingham JM. Building typologies and failure modes 
observed in the 2015 Gorkha (Nepal) earthquake. Bull N Zeal Soc Earthq Eng 2016; 
49:211–32. 
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