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S U M M A R Y 

Turkey is characterized by a high level of seismic activity attributed to its complex tectonic 
str ucture. The countr y has a dense network to record ear thquake g round motions; ho wever , 
to study previous earthquakes and to account for potential future ones, ground motion sim- 
ulations are required. Ground motion simulation techniques offer an alternative means of 
generating region-specific time-series data for locations with limited seismic networks or re- 
gions with seismic data gaps, facilitating the study of potential catastrophic earthquakes. In 

this research, a local ground motion model (GMM) for Turkey is developed using region- 
specific simulated records, thus constructing a homogeneous data set. The simulations employ 

the stochastic finite-fault approach and utilize validated input-model parameters in distinct re- 
gions, namely Afyon, Erzincan, Duzce, Istanbul and Van. To overcome the limitations of linear 
reg ression-based models, ar tificial neural network is used to establish the for m of equations 
and coef ficients. The predicti ve input parameters encompass fault mechanism (FM), focal 
depth (FD), moment magnitude ( M w 

), Joyner and Boore distance ( R JB 

) and average shear 
wav e v elocity in the top 30 m ( V s 30 ). The data set comprises 7359 records with M w 

ranging 

between 5.0 and 7.5 and R JB 

ranging from 0 to 272 km. The results are presented in terms of 
spectral ordinates within the period range of 0.03–2.0 s, as well as peak ground acceleration 

and peak ground velocity. The quantification of the GMM uncertainty is achieved through the 
analysis of residuals, enabling insights into inter- and intra-event uncertainties. The simulation 

results and the ef fecti veness of the model are verified by comparing the predicted values of 
ground motion parameters with the observed values recorded during previous events in the 
region. The results demonstrate the efficacy of the proposed model in simulating physical 
phenomena. 

Key words: Machine learning; Computational seismology; Earthquake ground motions. 
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 I N T RO D U C T I O N  

round motion models (GMMs) provide estimations of different
haking intensities that characterize strong ground motions from
rior knowledge of seismological parameters, such as moment mag-
itude M w , fault mechanism (FM), focal depth (FD), average shear
av e v elocity in the top 30 m ( V s 30 ) and various source-to-site
istance metrics. Because of their broad applications, GMMs are
ommonly employed in different fields, such as earthquake engi-
eering and seismology. Moreover, GMMs represent a well-known
ool for the prediction of ground shaking intensities, and therefore,
heir implementation is essential in the context of seismic hazard
nal yses. A large v ariety of GMMs have been developed in the
C © The Author(s) 2023. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ast for the prediction of various intensity measures (IMs), includ-
ng peak ground acceleration (PGA), peak ground velocity (PGV),
eak ground displacement (PGD), spectral acceleration (SA), or
seudo-spectral acceleration (PSA) at different periods (Boore &
tkinson 2008 ; Akkar et al. 2014 ; Campbell & Bozorgnia 2014 ).
evertheless, two major drawbacks might be pointed out regarding
ost GMMs currently availab le. F irst, most models adopt para-
etric formulations, which might induce bias in the prediction of

Ms (Campbell & Bozorgnia 2012 ) and second, GMMs rely on the
uality of the data set adopted to develop the model, which can be
roblematic for regions with a moderate to high levels of hazard and
ack of recorded accelerograms characteristic of large-magnitude
vents (Gianniotis et al. 2014 ). 
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Over the last decade, extensive research on GMMs has been con- 
ducted involving parametric formulations and robust mathematical 
forms. Boore et al. ( 2014 ) provided prediction equations for com- 
puting medians and standard deviations of PGA, PGV and 5 per cent 
damped PSA for shallow cr ustal ear thquakes using the NGA-West2 
database (Ancheta et al. 2014 ). Similarly, GMMs were presented 
by Bindi et al. ( 2014 ) valid for Europe and the Middle East, with 
distances (i.e. Joyner–Boore, R JB ; and hypocentral, R hypo ) less than 
300 km, hypocentral depth up to 35 km and M w range from 4 to 
7.6. Kale et al. ( 2015 ) proposed a GMM for Turkey and Iran to 
investigate the potential regional effects on ground motion ampli- 
tudes from shallow active crustal earthquakes using a subset of 
the recently compiled strong-motion database of the Earthquake 
Model of the Middle East Region project ( S ¸e s ¸etyan et al. 2018 ). 
Bommer et al. ( 2016 ) considered the Netherlands seismicity to de- 
velop GMMs for spectral ordinates of moderate-to-large-magnitude 
earthquak es. Lik ewise, Idini et al. ( 2017 ) presented a GMM valid 
for the Chilean subduction zone. The study by Bozorgnia & Camp- 
bell 2016a , b) focused on the development of GMMs for vertical 
components of PGA, PGV and PSA. The model was claimed to be 
valid for worldwide shallow cr ustal ear thquakes, various types of 
faulting, M w from 3.3 to 8.5, and for fault rupture distances ranging 
from 0 to 300 km. More recently, Bindi et al. ( 2019 ) introduced 
a GMM for the prediction of acceleration and displacement spec- 
tral ordinates, including countr y-to-countr y random ef fect (Ital y, 
T urkey , Romania, Greece and others). Boore et al. ( 2021 ) derived 
a GMM for the horizontal components of PGA, PGV and 5 per 
cent damped PSA using a wide database of uniformly processed 
strong-motion data recorded in Greece. Alternati vel y, the imple- 
mentation of alternative non-parametric GMMs has increased sig- 
nificantly in the last few years. W isznio wski ( 2019 ) implemented 
the Fahlman’s Cascade Correlation neural network (Fahlman & 

Lebiere 1990 ) to generate an improved GMM for the prediction 
of peak horizontal acceleration as a function of distant metrics 
in different M w ranges. Meenakshi et al. ( 2023 ) adopted artificial 
neural networks (ANNs) coupled with the genetic algorithm to de- 
velop GMMs in the Peninsular India for maximum rotated (RotD50) 
components of PGA, PGV and 5 per cent damped PSA for periods 
between 0.01 and 3 s. Sreenath et al. ( 2023 ) adopted diverse ma- 
chine learning models to develop a hybrid non-parametric GMM 

for shallow crustal earthquakes in Europe; the model was devel- 
oped for a large number of seismic intensities (i.e. PGA; PGV; 
PGD; cumulative absolute velocity; Arias intensity and significant 
duration). Based on recorded ground motions in T urkey , Yerlikaya- 
Özkurt et al. ( 2014 ) recently derived a GMM for Turkey to predict 
PGA and PGV using the multi v ariate adapti v e re gression splines 
method. 

In the meantime, other researchers have approached the lack of 
recorded accelerograms characteristic of large-magnitude events by 
adopting simulation techniques to reproduce synthetic motions. For 
instance, Ugurhan & Askan ( 2010 ) performed stochastic simula- 
tion based on the dynamic corner frequency approach proposed 
by Motazedian & Atkinson ( 2005 ) considering the D üzce (Turkey) 
earthquake that took place on 1999 November 12 ( M w = 7.1). 
Later, Ozmen et al. ( 2020 ) studied the same event with an up- 
dated simulation approach. Askan et al. ( 2013 ) investigated the 
sensitivity to seismic parameters of stochastic simulations using 
sparse data collected from the 1992 March 13 Erzincan earthquake 
in eastern Turkey of M w = 6.6. The work of Karimzadeh & Askan 
( 2018 ) focused on simulations of the historical 1939 Erzincan earth- 
quak e in Turk ey through the dynamic corner frequency approach 
using regional seismological information computed from the 1992 
earthquake that took place in the same region. Cheloni and Akinci 
( 2020 ) recently performed stochastic finite-fault simulations to gen- 
erate high-frequency synthetics motions for the Elazığ earthquake in 
Turkey of M w = 6.8. A scenario earthquake ground motion data set 
was also developed for the Gaziantep region in T urkey , which was 
af fected b y the recent 2023 Kahramanmara s ¸ e vents (Arslan K elam 

et al. 2022 ). Similarly, stochastic simulation has been employed for 
simulating the records of past earthquakes, such as: the 1998 July 
9 Faial Earthquake (Azores, Portugal) (Karimzadeh & Louren c ¸o 
2022 ); the 2022 Febr uar y 3 Cay (Turkey) ear thquake (Can et al . 
2021 ); the 2009 April 6 L’Aquila earthquake (Ugurhan et al. 2012 ) 
and the 2016 Kumamoto (Japan) earthquake (Zhang et al. 2016 ). 
Consecuti vel y, other investigations have addressed the validation 
of synthetic records from a seismological and engineering point of 
view (Zonno et al. 2010 ; Koboevic et al. 2011 ; Karimzadeh 2019 ; 
Karimzadeh et al. 2019 , 2020 ; Fayaz et al. 2020 ; Karimzadeh et al. 
2021a , b). In other studies, large suites of simulated motions have 
been employed for the development of GMMs valid for the pre- 
diction of PGA and spectral ordinates (Campbell 2003 ; Megawati 
et al. 2005 ; Withers et al. 2020 ; Raghucharan et al. 2021 ; Sreenath 
et al. 2023 ). 

This paper introduces a novel approach to develop a non- 
parametric GMM using a database of stochastically simulated 
records through an ANN implementation in Python. The study 
focuses on Turkey as the chosen area, driven by its high seismic 
activity and the scarcity of large-magnitude events in different re- 
gions. The choice of Turkey was further motivated by the occur- 
rence of recent catastrophic events of 2023 Febr uar y 6 in Gaziantep 
( M w = 7.7) and Elbistan ( M w = 7.5). While a non-parametric GMM 

for estimating spectral ordinates in Turkey has been pre viousl y pro- 
posed using the XGBoost algorithm (Mohammadi et al. 2023 ), it has 
limitations in capturing information on large-magnitude events and 
lacks data set homogeneity. In contrast, the non-parametric GMM 

presented in this paper relies on a substantial data set of synthetic 
records generated through the stochastic finite-fault method, en- 
compassing regions such as Afyon, Erzincan, Duzce, Istanbul and 
Van within T urkey . The developed model aims to predict ground 
motion IMs such as PGA, PGV as well as various values of PSA 

in the range 0.03–2.0 s. The ef fecti veness of the proposed GMM is 
verified by comparing the predicted values of the ground motion 
IMs with the observed values recorded during previous events in 
the selected regions. Additionally, the model’s trend is assessed by 
comparing it with the real data set of T urkey , which includes the 
most recent events of 2023 Febr uar y 6. In addition, the developed 
model is compared against the selected parametric GMM proposed 
by Kale et al. ( 2015 ). 

2  G RO U N D  M O T I O N  DATA  S E T  

This study utilizes the stochastic finite-fault ground motion sim- 
ulation approach proposed by Motazedian & Atkinson ( 2005 ) to 
constr uct the g round motion data set for the GMM. The chosen 
study area for conducting simulations is selected regions in Turkey 
characterized by high seismicity and diverse tectonic structures, in- 
cluding Afyon, Erzincan, Duzce, Istanbul and Van. Fig. 1 illustrates 
the tectonic map of Turkey with their convergence rates Utkucu et 
al. ( 2003 ), highlighting the selected study areas represented by red 
rectangular boxes. These regions are specifically selected due to the 
absence of a unified set of recorded ground motions that encom- 
pass a wide range of magnitudes, source-to-site distances and site 
conditions corresponding to past earthquakes. Focusing on these 
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Figure 1. Tectonic map of Turkey displaying epicentres of previous events (modified from the study of Utkucu et al. 2003 ). The red boxes indicate the regions 
considered in this study. 
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reas aims to address the need for a comprehensive data set that
ncompasses a broader spectrum of seismic events and associated
round motions. This section provides details on the methodology
mployed for ground motion simulation and information regarding
he scenario earthquakes and the generated ground motion data set.

.1. Ground motion simulation method 

he generation of synthetic records based on the stochastic point
ource was originally introduced by Boore ( 1983 ), who combined
he source spectrum of Aki ( 1967 ) and Brune ( 1970 ) with the find-
ngs of Hanks & McGuire ( 1981 ). Initially, the implementation of
oore ( 1983 ) relied on the deterministic far-field S -wave Fourier
mplitude spectrum of acceleration, where random phase angles
ere incorporated to generate single horizontal acceleration time-

eries. Subsequentl y, Beresne v & Atkinson ( 1997 ) extended the
oint-source model of Boore ( 1983 ) to include finite-fault effects
n simulations. This extension, known as the stochastic finite-fault
ethod, involved discretising the fault plane into smaller subfaults.
ach subfault is treated as a stochastic point source, and their con-

ributions are summed in the time domain. Ho wever , a limitation of
his method is the assumption of a constant corner frequency, which
ed to the dependence of the total radiated energy on the sizes of
he subfaults. To address this limitation, a more recent version of
he stochastic method introduced a dynamic corner frequency ap-
roach (Motazedian & Atkinson 2005 ) to model the high-frequency
ontent of the shear wave portion of ground motion records. In this
pproach, the corner frequency at any given time is defined to be in-
ersely proportional to the area of the subfaults that had ruptured up
o that time (Motazedian & Atkinson 2005 ). Fig. 2 is the schematic
istribution of the wave front from a finite-fault source model. 

This study employs the stochastic finite-fault method incorporat-
ng a dynamic corner frequency concept (Motazedian & Atkinson
005 ) to simulate earthquake scenarios in the selected regions in
 urkey . In this approach, the fault plane is represented by a collec-

ion of smaller subfaults, each of which is considered a stochastic
oint source (Boore 1983 ). The acceleration spectrum of each point
ource ( ij ) is expressed as follows: 

A i j ( f ) = 

C M 0 i j H i j ( 2 π f ) 2 

1 + 

(
f 

f c i j 

)2 
G ( R) e −

π f R i j 
Qβ S ( f ) e −( πκ f ) , (1) 

here 

 = 

R θφ × FS × PRTITN 

4 πρβ3 
. (2) 

In the given equations, various parameters are used to charac-
erize the seismic phenomena: M 0 represents the seismic moment

easured in dyne ·cm; R ij denotes the distance from the observa-
ion point to the subfault indexed as ij ; β signifies the crustal shear
av e v elocity, measured in km s −1 ; Q is the frequency-dependent
uality factor; G(R) presents the geometric spreading as a function
f source-to-site distance ( R ), S(f) represents the soil amplification
unction; k (kappa) models the linear decay in higher frequencies of
he Fourier amplitude spectrum of the S -wave portion of the accel-
ration records, represented in semi-logarithmic space; FS denotes
he free surface amplification factor, typically assumed to be 2 and
RTITN is a factor that reflects the partitioning of shear wave en-
rgy into two horizontal components. Its assumed value is generally
/ 
√ 

2 · ρ and represents the crustal density measured in g cm 

−2 ; H ij 

s a scaling factor dependent on frequency, specifically for high
requencies and, finally, R θø-denotes the radiation pattern constant,
ften considered as 0.55 for shear waves (Atkinson & Boore 1995 ).
t is worth noting that recent investigations (Takemura et al. 2016 ;
otha et al. 2019 ; Wang et al. 2021 ) underscore the rele v ance of

requency- and distance-dependent radiation pattern models. Yet,
his study is founded on utilizing a consistent radiation pattern co-
fficient of 0.55, construed as emblematic of an average radiation
attern coefficient. 

The term fc ij in eq. ( 1 ), which defines the corner frequency of a
ubfault, is defined as follows: 

f c i j = N R ( t ) 
− 1 

3 × 4 . 9 × 10 6 β

(
�σ

M 0 −ave 

)1 / 3 

, (3) 

art/ggad432_f1.eps
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Figure 2. Rectangular finite-fault model illustrating wave propagation (adapted from Hisada 1994 ). 
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where N R ( t ) represents the total count of subfaults that have expe- 
rienced rupture by time t , �σ denotes the stress drop and M 0- ave 

indicates the average seismic moment associated with the fault. 
The deterministic acceleration spectrum described in eq. ( 1 ) is 

combined with random phases and converted into the time domain 
for each point source on the fault plane. The individual contributions 
from each sub-fault are then accumulated in the time domain to 
produce the overall total acceleration as follows: 

a ( t ) = i = 

nl ∑ 

i= 1 

nw ∑ 

j= 1 
a i j 

(
t − �t i j − T i j 

)
, (4) 

where, a ij represents the time-series of acceleration specific to the 
ij th subfault, while a ( t ) denotes the acceleration of the entire fault. 
The terms nl and nw represent the number of subfaults considered 
along the length and width of the rectangular fault plane, respec- 
ti vel y. T ij corresponds to the ratio of the subfault radius to the rupture 
velocity and � t ij indicates the time delay between each subfault and 
the observation point. 

2.2. Input-model parameters 

The ground motion data set in this study encompasses a compre- 
hensive set of time-series derived from simulations conducted in 
div erse re gions of Turke y, including Afyon, Erzincan, Duzce, Is- 
tanbul and Van. The simulations cover a wide range of magnitude 
from 5.0 to 7.5 with an interval of 0.5 in addition to the past events, 
including the 2002 Afyon ( M w = 6.6), 1992 Erzincan ( M w = 6.9), 
1999 Duzce ( M w = 7.1) and 2011 Van ( M w = 7.1) earthquakes 
and a hypothetic scenario ( M w = 7.4) in Istanbul. It is noted that 
the input-model parameters of simulations for Afyon, Erzincan, 
Duzce and Van were validated against previous seismic events, in- 
cluding the 2002 Afyon ( M w = 6.6), 1992 Erzincan ( M w = 6.6), 
1999 Duzce ( M w = 7.1) and 2011 Van ( M w = 7.1) earthquakes 
in Ugurhan & Askan (2010 ), Aysegul Askan et al. ( 2013 ), Zen- 
gin & Cakti ( 2014 ) and Can et al . (2021) , while, for Istanbul, a 
hypothetical scenario ( M w = 7.4) was validated against GMMs by 
Uckan et al. ( 2018 ). In all regions, the simulations involved cali- 
brating the validated parameters specifically for different scenario 
events. To this end, the dimensions of the fault planes, in terms 
of length and width, are determined by calibrating them with the 
earthquake magnitude ( M w ) through the empirical equations intro- 
duced by Wells & Coppersmith ( 1994 ). Similarly, the stress drop 
is calibrated using the empirical equation proposed by Mohamma- 
dioun & Serva ( 2001 ). The local site classes are also incorporated 
in the selected random nodes (Ismet Kanli et al. 2006 ; Ugurhan & 

Askan 2010 ; Askan et al. 2015 ; Sahin et al. 2016 ; Akkaya & Özvan 
2019 ). This approach resulted in consideration of three distinct 
soil types, each characterized by mean V s 30 values of 255 m s −1 

(NEHRP soil class D ((US) & (US) 2001 )), 310 m s −1 (generic 
soil) and 520 m s −1 (NEHRP soil class C ((US) & (US) 2001 )), 
according to the study of Boore & Joyner ( 1997 ). By incorporat- 
ing these soil types, the simulations account for the variability in 
ground response associated with different soil conditions pre v a- 
lent within the study regions. Table 1 provides a summary of the 
input-model parameters utilized for simulations conducted in the 
selected regions. These parameters encompass source character- 
istics, path properties and site conditions, offering a comprehen- 
siv e ov erview of the key factors considered in the simulations for 
each respective region. In addition, the table outlines the bound- 
aries for each region in which e venl y distributed nodes are chosen 
for simulations. The respective numbers of stations considered for 
Afyon, Erzincan, Duzce, Istanbul and Van are 324, 365, 90, 88 and 
430. 

It is important to note that the simulations conducted in this 
study have been rigorously verified and validated in earthquake 
engineering practice. The authors have pre viousl y employed these 
simulations in various studies encompassing different applications 
(Askan et al. 2015 ; Karimzadeh et al. 2017 a, b, 2019 , 2020 , 2021 ; 
Karimzadeh & Askan 2018 , 2021 ; Ozmen et al. 2020 ; Can et al . 
2021 ; Kelam et al. 2022 ). This e xtensiv e practical application and 
validation serve to enhance the reliability and credibility of the 
simulation methodology used. 
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2.3. Sim ulation r esults 

The results of simulations led to a total of 7358 acceleration time- 
series in Afyon, Duzce, Erzincan, Istanbul and Van. In summary, the 
data set contains scenarios with M w ranging from 5.0 to 7.5 and R JB 

values up to 272 km. For Duzce simulations, the M w values of the 
scenario events are 5.0, 5.5, 6.0, 6.5, 7.0, 7.1 and 7.5. For Erzincan, 
M w values include 5.0, 5.5, 6.0, 6.5, 6.6, 7.0 and 7.5. For Istanbul, 
M w values are 5.0, 5.5, 6.0, 6.5, 7.0 and 7.4, while for Afyon, the 
M w range includes 5.0, 5.5, 6.0, 6.5, 6.6 and 7.0. Finally, for the sce- 
nario events in Van, the M w values are 5.0, 5.5, 6.0, 6.5, 7.0 and 7.1. 
For all regions, three distinct soil types characterized b y V s 30 v alues 
of 255, 520 and 310 m s −1 are considered. These measures of shear 
wav e v elocity correspond to soil types C, D and generic soil, respec- 
ti vel y (Boore & Joyner 1997 ). As reported pre viousl y, the number 
of stations corresponds to 90 for Duzce, 365 for Erzincan, 88 for 
Istanbul, 324 for Afyon and 430 for Van, leading to a total of 1297 
stations. The distribution of FMs within the stations corresponds 
to 40.7 per cent for the strike-slip mechanism, 35.1 per cent for the 
thrust and 24.2 per cent for the normal FM (see Fig. 3 a). In addition, 
the distribution of simulations with respect to regions is shown in 
Fig. 3 (b). It is noted that the availability and validity of input-model 
parameters impact the variability in the number of simulations con- 
ducted in different regions (Ismet Kanli et al. 2006 ; Ugurhan & 

Askan 2010 ; Askan et al. 2015 ; Sahin et al. 2016 ; Akkaya & Özvan 
2019 ). 

Fur ther more, the histog rams por tray ed in F ig. 4 reveal the seis- 
mological features of the performed simulations. First, the presence 
of high-magnitude motions (i.e. M w values from 7.0 up to 7.5) 
should be noted, covering in this way the lack of real recorded high- 
magnitude events. An even occurrence of simulations in the range 
5.0 ≤ M w ≤ 7.0 is also observed. In the case of distance metrics, the 
number of synthetic records reduces as the values of R JB sequentially 
increase. In the case of V s 30 , the predominance of simulations for soil 
type C is clear, with fewer occurrences for generic soil and soil type 
D. The majority of simulations were performed for depth values less 
than or equal to 10 km, while the rest of them (approximately 20 per 
cent) were performed for depth values in the range 10 km < FD < 

20 km. Finally, the distribution of PGA and PGV metrics regarding 
R JB values, and for each FM is depicted in Fig. 5 . Independently of 
the fault type, the distribution of PGA and PGV shows higher values 
for lower R JB and higher values of M w . This behaviour is coherent 
with the actual distribution of PGA and PGV with respect to distant 
metrics and M w values, which further validates the performance of 
simulations. 

F inally, F ig. 6 depicts samples of the simulated time-series for 
the regions under analysis, selected as representative examples of 
large-magnitude events with higher PGA values. Baseline correc- 
tion and Butterworth filtering in the range of 0.1–25 Hz are ap- 
plied for the postprocessing of the signals. The earthquake time- 
series for Afyon represents a scenario of M w 7.0, V s 30 of 255 m s −1 

and R JB of 62.49 km with a resulting PGA of 395.55 cm s −2 . The 
same soil conditions, M w of 7.1 and R JB of 30.40 km, are assumed 
for Duzce, with an estimated PGA of 540.01 cm s −2 . The M w for 
Erzincan simulation is for a scenario event of 7.5, with V s 30 of 
520 m s −1 and R JB of 4.81 km resulting in PGA of 913.10 cm s −2 . 
For Istanbul, M w of 7.4, V s 30 of 255 m s −1 and R JB of 8.16 km 

are taken, respecti vel y, resulting in a PGA of 746.45 cm s −2 . Ulti- 
matel y, a v alue of 354.89 cm s −2 in terms of PGA is computed b y 
taking M w , V s 30 and R JB values of 7.1, 310 m s −1 and 122.68 km, 
respecti vel y. 
3  G RO U N D  M O T I O N  M O D E L L I N G  

M E T H O D O L O G Y  

The pre v ailing approach for predicting ground motion IMs, like 
PGA, PGV or PSA, is to employ GMMs. These models are typi- 
call y de veloped using empirical methods that entail performing sta- 
tistical regression analysis on extensive data sets of ground motion 
intensities (Bindi et al. 2014 , 2019 ; Boore et al. 2014, 2021 ; Kale 
et al. 2015 ; Bommer et al. 2016 ; Bozorgnia & Campbell 2016a , b ; 
Idini et al. 2017 ). Given the considerable variability or dispersion 
observed in the ground motion data for each IM, GMMs typically 
offer a probability distribution of potential ground motion results 
rather than a single deterministic value. In this study, the GMM to 
be developed has the following form: 

ln 
(
y i j 

) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

ln ( PGA ) 
ln ( PGV ) 

ln ( PSA 0 . 03s ) 
. . . 

ln ( PSA 2s ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= f ( M w , R JB , V s30 , FD , FM 

) + ηi + ε i j , (5) 

where ln( y ij ) is the natural logarithm of the interested IM, herein 
PGA, PGV and PSA. The inter-event residual component is de- 
noted as ηi and the intra-event residual component is denoted as 
ε ij both in the natural logarithm scale. Finally, i represents the in- 
dex of the earthquake event, and j represents the index of the sta- 
tion. The functional form in eq. ( 5 ) is modelled using the ANN 

algorithm. 
The two components of residuals in GMMs, namely inter-event 

and intra-event residuals, are assumed to be independent and follow 

a normal distribution with a mean of zero. The inter-event residual 
component has a standard deviation of τ , while the intra-event 
residual component has a standard deviation of σ . To calculate the 
total standard deviation for a given GMM, the square root of the 
sum of squares of the two components of residuals is taken. This 
can be expressed mathematically as follows: 

φ = 

√ 

σ 2 + τ 2 . (6) 

F inally, the inter -event error for the ith earthquake event can be 
described as follows: 

ηi = 

τ 2 
n i ∑ 

1 
δi j 

n i τ 2 + σ 2 
≈

n i ∑ 

1 
δi j 

n i 

(
n i τ

2 >> σ 2 
)
. (7) 

Since the number of records in each event is rather large and 
n i 2 is much larger than 1, the approximate equation can accurately 
measure the inter-event residuals (Kubo et al. 2020 ). Finally, the 
intra-event residuals can be obtained by subtracting the inter-event 
residuals and predicted IMs from the observed ones. 

ANNs are intricate networks comprised of interconnected neural 
computing elements. They possess the capability to receive input 
stimuli and adapt to their environment through learning. The pro- 
cess of utilizing ANN in volves tw o phases: learning and recall. In 
the learning phase, known data sets are employed to train the net- 
work by adjusting the weights between the input and output layers. 
Subsequently, during the recall phase, the network applies the ac- 
quired weights to process new inputs and make predictions. ANNs 
have emerged as a well-established and widely utilized tool across 
various domains (Flood & Kartam 1994 ; Abiodun et al. 2018 ). 
Neural network paradigms are characterized b y v arious nomencla- 
tures. In the context of network architecture, a single-layer network 
comprises individual input and output units, while a multilayer net- 
work incorporates one or more hidden units situated between the 
input and output layers. The backpropagation neural network is a 
well-known example of a multilayer neural network (Adamowski & 
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Figure 3. Distribution of simulations regarding (a) FMs and (b) regions. 

Figure 4. Histograms of seismological features of the simulated Turkish ground motion records. 

Figure 5. (a) PGA and (b) PGV distributions with respect to the distant metric and faulting mechanism. 
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arapataki 2010 ). It employs a gradient-descent technique to min-
mize errors during the learning process, thereby facilitating error

inimization in the network. ANN attempts to emulate the paral-
el information processing capability observed in the human brain.
he increasing interest in utilizing ANN-based black box models in
eismology and earthquake engineering problems can be attributed
o their ability to model nonlinear multi v ariate problems ef fecti vel y
M öller et al. 2009 ; Dhanya & Raghukanth 2018 ; Paolucci et al.
018 ; Khosra vikia & Cla yton 2021 ; Kalakonas & Silva 2022a , b ;
ohammadi et al. 2023 ). ANNs have demonstrated promising per-

ormance in capturing the complex relationships present in such
rob lems, making them valuab le tools in earthquake engineering
pplications. 

Here, the Sklearn multilayer perception regressor (Pedregosa
t al. 2011 ), a widel y reco gnized and established Python package,
s utilized. In conjunction with cross-validation, the random search
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Figure 6. Samples of simulated time-series for the regions under analysis. 
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technique is employed to determine the optimal configuration for 
the number of hidden layers, the number of nodes and the acti v ation 
function within the model. The data set is divided, with 80 per cent 
of the data allocated for training the model and the remaining 20 
per cent used only for model validation. The input parameters uti- 
lized in the model include the input-model parameters of this study 
include M w , R JB , V s 30 , FD and FM. The output layer of the model 
consisted of the prediction of ground motion IMs, namely PGA, 
PGV and PSA in the period range of 0.03–2.0 s. This study utilizes 
a one-layer neural network architecture based on the random search 
optimization technique. The architecture includes an input layer, 
a hidden layer consisting of 50 neurons, and an output layer. The 
provided schematic in Fig. 7 illustrates the structural representation 
of the employed ANN algorithm. 

4  R E S U LT S  A N D  D I S C U S S I O N S  

This section provides an overview of the results obtained from 

the developed ANN-based GMM. Following that, the developed 
GMM is subjected to a validation process in which its pattern 
is compared with all the recorded ground motion data sets from 

T urkey , encompassing the latest events up to 2023. Specifically, 
the success of the GMM in estimating the intensity parameters of 
past real events in T urkey , with a focus on the Afyon, Erzincan, 
Duzce, Istanbul and Van regions, is e v aluated to further assess its 
performance. 

4.1. Performance of ANN-based GMM 

In this section, the performance of ANN-based GMM is assessed 
through a set of statistical metrics, including root-mean-square er- 
ror (RMSE), coefficient of determination ( R 

2 ), Pearson correlation 
coefficient ( r ) and mean-absolute-percentage error (MAPE). These 
metrics provide insight into the model’s accuracy, fit, correlation and 
relative error , allo wing for a comprehensi ve e v aluation of its perfor- 
mance. Fig. 8 presents the e v aluated metrics for the proposed GMM 

across all considered IMs, namely, ln(PGA), ln(PGV) and ln(PSA) 
at periods ranging from 0.03 to 2 s. The values of RMSE, R 

2 and 
r metrics fall within a narrow range, indicating a consistent perfor- 
mance across all IMs without any notable variation for a specific 
IM. The mean RMSE value is approximately 0.3, slightly increasing 
toward ln(PSA) at longer periods. In a similar trend, as can be seen 
in Fig. 8 , there is a slight decline in the R 

2 and r metrics for ln(PSA) 
as the periods increase. The mean R 

2 -value is nearly 0.97, suggest- 
ing a robust fit between the model and the data. The mean r -value is 
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Figure 7. Structure of the ANN model and illustration of artificial neurons of the hidden layer. 

Figure 8. Model performance metrics in terms of RMSE, R 

2 , r and MAPE for IMs including ln(PGA) , ln(PGV) and ln(PSA) at periods ranging from 0.03 to 
2 s. 
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oughly 0.98, indicating a strong linear correlation between the es-
imated and observed IMs Furthermore, the similarity between the
MSE, R 

2 and r values of the train and the test data sets suggests a
onsistent level of accuracy, fit and correlation across both data sets,
especti vel y. This implies that the model is performing reliably in
erms of these metrics regarding the unseen data. On the other hand,
he MAPE values exhibit a slightly wide range, indicating varying
evels of prediction accuracy across considered IMs. The MAPE
alues for ln(PSA) within periods of 0.05–0.4 s remain in a tight
ange with a mean value of roughly 0.1 across the train and test data
ets. A similar trend is observed for ln(PGA) with a mean MAPE
 alue of 0.2. Howe ver, the MAPE v alues increase for ln(PGV) and
n(PSA) at periods higher than 0.4 s. Additionally, there is less
onsistency across the train and test data sets for ln(PGV) and
n(PSA) at long periods. The differences observed between MAPE ,
nd RMSE are an anticipated outcome due to the inherent nature
f these metrics, which assess distinct aspects of error. MAPE em-
hasizes the relative magnitude of errors, whereas RMSE takes into
ccount the overall magnitude of errors. As a result, MAPE tends
o be more sensitive to outliers and the scale of the data within the
odel. Ho wever , the agreement between, RMSE, R 

2 and r values is
igher than that of MAPE, indicating a strong performance of the

odel. i  
Subsequently, the model’s bias with respect to the input vari-
bles, namely, M w , R JB and V s 30 is assessed through the analysis
f residuals. To this end, the total uncertainty is divided into the
nter-event ( τ ) and intra-event ( σ ) uncertainties, demonstrating the
tandard deviation of residuals attributed to the earthquake source
nd site characteristics, respecti vel y. Fig. 9 shows the distribution
f inter-/intra-event and total uncertainties for ln(PGA), ln(PGV)
nd ln(PSA) at periods of 0.03 s up to 2 s. Overall, the inter-event
esidual is consistently smaller than the intra-event residual across
ll IMs. The intra-event residual of ln(PSA) tends to increase at
onger periods, leading to higher total uncertainty. 

A closer analysis of residuals is conducted by selecting sample
Ms, ln(PGA) , ln(PGV) and ln(PSA) at periods of 0.2, 0.5, 1.0
nd 2.0 s. These IMs are selected to encompass a frequency band-
idth including low , intermediate and high frequencies. Fig. 10

hows the distribution of inter-event residuals with respect to M w 

or selected IMs Likewise, Figs 11 and 12 show the distribution
f intra-event residuals in relation to R JB and V s 30 for the same
Ms, respecti vel y. The inter-e vent residuals vary between −0.5 and
.5, while the intra-event residuals show a broader range between
1.0 and 1.0, consistent with other studies (Akkar et al. 2014 ;
ale et al. 2015 ; Mohammadi et al. 2023 ). The fitted green lines

n Figs 10–12 indicate the mean of residuals corresponding to the
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Figure 9. Distribution of the inter-event ( τ ) and intra-event ( σ ), and total uncertainties ( ϕ) for IMs including ln(PGA) , ln(PGV) and ln( PSA ) at periods ranging 
from 0.03 to 2 s. 

Figure 10. Distribution of the inter-event residual ( η) with respect to M w for ln(PGA) , ln(PGV) and ln(PSA) at periods of 0.2, 0.5, 1.0 and 2.0 s. 
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explanatory variab les, w hile the shaded area around these lines rep- 
resents the 95 per cent confidence interval for the true mean of the 
residuals. There is no discernible trend in the inter- and intra-event 
mean residual across all IMs, indicating the unbiasedness of model 
errors. The tight confidence inter vals fur ther suppor t this obser va- 
tion. Additionally, we employ p -values at a significance level of 
0.05 to examine the null hypothesis regarding the unbiasedness of 
model errors. p -values close to 1.0 imply less bias toward the in- 
put parameters. In general, all p -values exceed 0.05 by far across 
all IMs, implying the absence of any trend in the mean residual. 
Thus, the model does not exhibit systematic bias toward M w , R JB 

and V s 30 . Ho wever , as can be seen in Fig. 10 , the confidence interval 
of the mean residual is slightly wider as the magnitude of the event 
increases. 
4.2. Validation of the developed ANN-based GMM 

To ensure that the proposed GMM captures the characteristics of 
recorded strong ground motions, the results are assessed across var- 
ious magnitudes ( M w ) and distances ( R JB ) by considering soil class 
C ( V s 30 = 520 m s −1 ), FM of strike-slip and the mean FD. Fig. 13 
illustrates the variation of selected IMs, including PGA, PGV and 
PSA at periods of 0.2, 0.5, 1 and 2 s with respect to M w for various 
R JB values of 1, 30 and 70 km. The median of the selected IMs 
and a range of two standard deviations are considered. Filled and 
unfilled dots, respecti vel y, represent IMs obtained from real and 
simulated earthquake events. The results are also compared with 
a selected parametric GMM developed for Turkey by Kale et al. 
( 2015 ). It is clear that higher M w and lower R JB result in ele v ated 
levels of all selected IMs Similarly, Fig. 14 shows the variation of 
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Figure 11. Distribution of the intra-event residual ( ε) with respect to R JB for ln(PGA) , ln(PGV) and ln(PSA) at periods of 0.2, 0.5, 1.0 and 2.0 s. 

Figure 12. Distribution of the intra-event residual ( ε) with respect to V s 30 for ln(PGA), ln(PGV) and ln(PSA) at periods of 0.2, 0.5, 1.0 and 2.0 s. 
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he same IMs with respect to R JB for different M w values of 5.5,
.5 and 7.5. Similarly, the results are compared with the GMM
f Kale et al. ( 2015 ). An increase in R JB leads to a decrease in
GA, PGV and PSA levels at all periods. The proposed GMM ef-
ecti vel y captures this distance-dependent attenuation. As shown in
ig. 14 , higher M w is associated with higher ground motion ampli-

udes consistent with the former observation. This is expected as
igher M w corresponds to higher energy release during an earth-
uake. There are multiple real records, including those from the
ecent Turkey 2023 event, which fall within the considered seismo-
ogical criteria. As shown in Fig. 14 , the proposed GMM effectively
aptures the sample IMs obtained from these real records, partic-
larly for strong events ( M w = 7.5), mostly within two standard
eviations. 
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Figure 13. Variation of PGA, PGV and PSA at periods of 0.2, 0.5, 1 and 2 s with respect to M w for faut mechanism of strike-slip, V s 30 = 520 m s −1 and R JB 

= 1, 30 and 70 km. 
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Finally, the comparisons show that for large-magnitudes the 
ANN-based GMM de veloped b y this study performs more ef- 
fecti vel y than the parametric GMM, especially for the 2023 
Kahramanmara s ¸ earthquakes in T urkey . This implies the reliable 
performance of the proposed GMM regarding unseen data. 

The capability of the proposed GMM to capture the geometric 
and inelastic attenuation is further investigated. To this end, the vari- 
ation of PSA regarding R JB for soil class C ( V s 30 = 520 m s −1 ), FM 

of strike-slip and two M w of 5.0 and 7.5 are illustrated in Fig. 15 (a). 
Results demonstrate that as distance increases, the peak value of 
PSA decreases and shifts toward longer periods as observed in 
previous studies (Dhanya & Raghukanth 2018 ; Mohammadi et al. 
2023 ). The seismic energy dissipates as it propagates away from the 
source due to geometric and inelastic attenuation (Boore 2003 ), re- 
sulting in lower levels of PSA. However, higher frequency contents 
tend to attenuate faster with distance, leading to a shift of PSA peaks 
toward longer periods. This shift is affected by M w and is less for 
M w = 7.5 compared to 5.0, as illustrated in Fig. 15 (a). Similarly, the 
performance of the proposed GMM in representing the effects of 
soil is assessed. For this purpose, soil class C, generic soil and soil 
class D are considered with a representative mean V s 30 of 520, 310 
and 255 m s −1 , respecti vel y, according to NEHRP soil classification 
((US) & (US) 2001 ) and Boore & Joyner ( 1997 ). Fig. 15 (b) depicts 
the variation of PSA regarding soil classes for R JB = 10 km and two 
M w of 5.0 and 7.5. The results clearly indicate that when transition- 
ing from stiffer soil (type C) to softer soil (type D), there is a notable 
increase in PSA le vel, especiall y for longer periods. Additionall y, 
the peak of the spectra tends to shift towards longer periods. Results 
indicate that the magnitude of the earthquake influences the extent 
of this peak shift, which aligns with the fundamental principles of 
the earthquake’s physics (i.e. the corner frequency is lower for large 
M w and thus, large events have enhanced longer periods). 

The performance of the developed model is further assessed by 
analysing its ability to predict the ground motion IMs for real events 
that occurred in the regions where there are available simulated mo- 
tions. Specifically, the model’s performance is evaluated for the 
2002 Afyon ( M w = 6.6), 1992 Erzincan ( M w = 6.6), 1999 Duzce 
( M w = 7.1) and 2011 Van ( M w = 7.1) earthquakes. Table 2 rep- 
resents detailed information on these events. Table 3 compares the 
real ground motion IMs, namely PGA and PGV, with the predicted 
values obtained from the developed GMM at three selected sta- 
tions with different seismological information for each event. The 
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Figure 14. Variation of PGA, PGV and PSA at periods of 0.2, 0.5, 1.0 and 2.0 s with respect to R JB for FM of strike-slip, V s 30 = 520 m s −1 , and M w = 5.5, 
6.5 and 7.5. 
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omparison demonstrates that, for the majority of stations, the esti-
ated values fall within two standard deviations of the actual values

or all events, with both underestimation and overestimation of the
ecorded data. This observation provides additional validation for
he proposed model and simulated data set, affirming their suitabil-
ty in accurately predicting the characteristics of the recorded strong

otions. 
It is worth noting that the stochastic ground motion simulation
ethod ef fecti vel y replicates obser ved g round motions for medium-

o high-frequency contents, predominantly due to the influence of
eismic wave scattering, as highlighted in Sato et al. ( 2012 ). How-
ver, propagation path effects resulting from deterministic velocity
tructures become prominent for short-frequency contents. Conse-
uently, the current method’s reproducibility diminishes for low-
requency (long-period) content (IMs, including PGV and PSA
t 1 and 2 s). While addressing this limitation by integrating de-
er ministic velocity str uctures through the finite-difference, spec-
ral element, or finite-element methods (Mai et al. 2010 ; Pitarka
t al. 2022 ), simulations for long-period ranges would enhance the
ethod’s accuracy. 
In summary, the developed ANN-based GMM, utilizing homo-

eneous earthquake data, demonstrates the ability to accurately cap-
ure real ground motion attenuation patterns, thus eliminating the
eed for complex nonlinear regressions with numerous coefficients.
o wever , the traditional approach remains crucial in situations char-

cterized by limited data availability when compared to all machine-
earning-based non-parametric GMMs. This limitation is often due
o its reliance on established equations rooted in fundamental phys-
cal principles. It is noteworthy that the recent earthquakes that
ccurred in Turkey in 2023 have notably improved the quality
nd quantity of near-field from large-magnitude events. Therefore,
t is imperative that future research endeavours prioritize the in-
orporation of this high-quality data into machine-learning-based
MMs. 
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Figure 15. Variation of PSA for different (a) R JB values of 10, 70 and 130 km for soil class C ( V s 30 = 520 m s −1 ) and (b) soil classes for R JB = 10 km based 
on FM of strike-slip and two M w of 5.0 and 7.5. 

Table 2. Detailed information on the past large-magnitude earthquakes within the region 

Event Date Local time 
Epicentre 
latitude 

Epicentre 
longitude M w FM FD 

2002 Afyon 3-Feb-2002 7:11 38.6 31.2 6.6 N 9.60 
1992 Erzincan 13-Mar-1992 17:18 39.7 39.6 6.6 SS 10.00 
1999 Duzce 12-Nov-1999 18:57 40.8 31.2 7.1 SS 11.23 
2011 Van 23-Oct-2011 13:41 38.6 43.5 7.1 R 16.00 

Table 3. Comparing real PGA and PGV with predicted values from the developed GMM for past earthquakes in Turkey at selected stations 

Region Station R JB ( km) 
V s 30 

(m s −1 ) PGA obs (cm s −2 ) PGV obs (cm s −1 ) PGA pred (cm s −2 ) PGV pred (cm s −1 ) 

μ ± 2 φ μ ± 2 φ
Afyon 301 52 226 108.93 10.42 [39.27–94.28] [4.02–12.31] 

4302 133 243 23.00 3.37 [14.59–35.17] [1.87–5.72] 
6401 144 285 6.59 1.38 [14.89–35.90] [1.95–5.97] 

Duzce 1612 102 197 22.03 2.55 [18.48–44.55] [2.50–7.67] 
8101 0 282 455.98 73.49 [494.66–1192.57] [40.89–125.31] 
1604 156 459 8.25 1.98 [5.96–14.36] [0.82–2.50] 

Erzincan 2402 5 314 438.34 93.19 [344.56–830.70] [27.08–83.00] 
2403 62 433 73.35 4.94 [29.45–71.01] [2.64–8.09] 
2405 58 320 32.30 7.35 [36.47–87.93] [3.70–11.33] 

Van 401 98 295 16.59 4.95 [11.18–26.95] [1.50–4.60] 
1211 171 463 4.26 1.82 [3.34–8.04] [0.48–1.47] 
4901 130 315 8.46 2.08 [7.61–18.34] [1.10–3.38] 
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5  C O N C LU S I O N S  

In this study, a local GMM for Turkey is developed, utilizing a 
homogeneous data set created through the simulation of region- 
specific records. The stochastic finite-fault approach is employed, 
using the validated input-model parameters for selected regions 
in Turkey with large past earthquakes, including Afyon, Erzincan, 
Duzce, Istanbul and Van. To overcome the limitations of traditional 
linear regression-based models, an ANN is utilized herein to estab- 
lish the predictive equations and coef ficients. The predicti ve input 
parameters include FM, FD, M w , R JB and V s 30 . The simulation re- 
sults include spectral ordinates (PSA) within a specific period range 
(0.01–2.0 s), PGA and PGV. The uncertainty of the GMM is quanti- 
fied through the analysis of residuals, providing insights into inter- 
and intra-event uncertainties. The developed GMM and simulation 
results are compared with the real data set of T urkey . The following 
main conclusions are drawn from the analysis conducted in this 
study: 

(i) A homogeneous ground motion data set covering a large range 
of magnitudes, source-to-site distances and soil classes is developed 
for different regions in T urkey . The data set consists of 7359 records, 
covering different FMs including normal, reverse and strike-slip, a 
range of M w between 5.0 and 7.5, R JB in the range of 0–272 km 
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nd soil classes of C, D and generic soil as proposed in Boore &
oyner ( 1997 ). A comparison of the trend of these data sets with
he recorded ground motion data set demonstrates the validity of
he simulations within the region. Therefore, these data sets are
vailable for engineering use. 

(ii) The analysis of residuals yields satisfactory levels of uncer-
ainty across all spectral values. The residuals are further examined
o assess inter- and intra-event uncertainties concerning explanatory
 ariables. Specificall y, the inter-e vent residual is examined with re-
pect to magnitude, while the intra-event residual is investigated
onsidering soil and distance information within the data set. The
esults indicate that the inter-event uncertainty for all spectral val-
es is smaller than the intra-event uncertainty . Additionally , it is
bserved that neither the inter-event nor the intra-event residuals
xhibit significant bias with respect to the input variables. These
ndings indicate a consistent performance of the GMM with re-
pect to input parameters. 

(iii) The proposed GMM ef fecti vel y captures the physical char-
cteristics observed in real earthquakes regarding the magnitude,
ource-to-site distance and soil type. In particular, the GMM fea-
ures distance-dependent attenuation, geometric and anelastic at-
enuation, and soil amplification effects. 

(iv) The capability of the proposed GMM in estimating the
round motion amplitudes even for large-magnitude events, in-
luding the most recent ones in Turkey in 2023, is confirmed by
omparing results with the unseen data from Turkish real record
ata sets. 

(v) The model’s ef fecti v eness is further v erified by comparing the
redicted ground motion parameters with observed values recorded
uring previous events in the region. Overall, the research validates
he suitability of the proposed model and simulated data set in ac-
urately simulating seismic phenomena in T urkey . The utilization
f an ANN-based GMM offers a notable advantage in compre-
ensi vel y capturing the intricate and nonlinear attributes inherent
n ground motion data sets, in contrast to the parametric GMMs.
his advancement holds particular significance, as the ANN-based
odel alleviates the stringent limitations imposed by conventional
MMs in terms of prescribed functional forms and the determina-

ion of unknown coefficients. Fur ther more, the existing parametric
MM exhibit a constraint in adequately representing intensity lev-

ls, especially for events with large magnitudes. This deficiency is
ddressed through the proposed model introduced in this research. 

Finall y, the v alidity of the proposed model is restricted to the ex-
mined regions and other areas with similar tectonic characteristics.
t is essential to emphasize that the model’s applicability is solely
imited to the FMs, FDs, magnitudes, distances and soil conditions
onsidered in this study . Additionally , using a stochastic finite-fault
imulation technique enhances the model’s ability to reproduce
edium- to high-frequency ground motion records accurately. Yet,

ncorporating more accurate frequency- and distance-dependent ra-
iation pattern models can augment the fidelity and precision that
haracterize the outcomes of ground motion simulation endeavours,
articularly in enhancing low-frequency content representation. In
ddition, deterministic wave propagation studies using numerical
odels such as finite-element, finite-difference and spectral element

re imperative for a more precise simulation of the low-frequency
ontents. Thus, to improve the accuracy and overcome limitations of
he proposed model, especially in different regions, future research
hould focus on implementing the suggested ANN-based GMM
n other tectonic zones while also addressing the need to enhance
he representation of low-frequency content. These improvements
an be achieved by constructing region-specific simulated data sets
nd employing hybrid ground motion simulation approaches. More-
ver, the continuous enhancement in data quality and quantity, as
vident from events such as the 2023 Febr uar y 6 Kahramanmara ş
arthquak es in Turk ey, highlights the pressing necessity for future
esearch to prioritize the initial integration of this superior data
nto synthetic data sets and, in the following stages, into machine-
ear ning-based GMMs. These effor ts will facilitate advancements
n accuracy and expand the applicability of the proposed model
cross various geological settings. 
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Kale , Ö. , Akkar, S., Ansari, A. & Hamzehloo, H., 2015. A ground-motion 
predictive model for iran and turkey for horizontal PGA, PGV, and 5% 

damped response spectrum: investigation of possible regional effects. 
Bull. seism. Soc. Am., 105, 963–980. 

Karimzadeh , S. , 2019. Seismological and engineering demand misfits for 
e v aluating simulated ground motion records. Appl. Sci. (Switzerland), 9, 
4497. https://doi.org/10.3390/app9214497 . 

Karimzadeh , S. & Askan, A., 2018. Modeling of a historical earthquake in 
Erzincan, Turkey (Ms ∼7.8, in 1939) using regional seismological infor- 
mation obtained from a recent event. Acta Geophys., 66, 293–304. 

Karimzadeh , S. & Askan, A., 2021. Collection of microseismic intensity 
data: a model for Turkey. Arab. J. Geosci., 14 . https://doi.org/10.1007/s1 
2517- 021- 06812- 1 . 

Karimzadeh , S. , Askan, A. & Yakut, A., 2017a. Assessment of simulated 
ground motions in Earthquake engineering practice: a case study for 
Duzce (Turkey). Pure appl. Geophys., 174, 3589–3607. 

Karimzadeh , S. , Askan, A., Yakut, A. & Ameri, G., 2017b. Assessment of 
alternative simulation techniques in nonlinear time history analyses of 
multi-story frame buildings: a case study. Soil Dyn. Earthq. Eng., 98, 
38–53. 

Karimzadeh , S. , Hussaini, S.M.S., Funari, M.F. & Louren c ¸o, P.B., 2021a. 
On the effect of different code-based ground motion selection approaches 
for the estimation of the seismic demand of masonry structures by using 
real ground motion data set. https://doi.or g/10.1002/essoar .10509375.1 . 

Karimzadeh , S. , Kadas, K., Askan, A. & Yakut, A., 2021b. Comparison of 
real and simulated records using ground motion intensity measures. Soil 
Dyn. Earthq. Eng., 147, 106796. https://doi.org/10.1016/j.soildyn.2021.1 
06796 . 

Karimzadeh , S. , Kadasa, K., Askanb, A., Erberikb, M.A. & Yakutb, A., 
2020. Deri v ation of anal ytical fragility curves using SDOF models of 

http://dx.doi.org/10.1016/j.jappgeo.2018.11.009
http://dx.doi.org/
https://doi.org/10.1016/j.soildyn.2021.107129
http://dx.doi.org/10.3906/yer-1503-8
http://dx.doi.org/10.1016/j.soildyn.2013.09.014
http://dx.doi.org/10.1785/BSSA0850010017
http://dx.doi.org/
http://dx.doi.org/10.1007/s10518-018-0466-x
http://dx.doi.org/10.1007/s10518-013-9525-5
http://dx.doi.org/
http://dx.doi.org/10.1785/BSSA07306A1865
https://doi.org/10.1785/BSSA07306A1865
http://dx.doi.org/10.1007/PL00012553
http://dx.doi.org/10.1193/1.2830434
http://dx.doi.org/10.1785/0120200270
http://dx.doi.org/10.1785/BSSA0870020327
http://dx.doi.org/10.1193/070113EQS184M
http://dx.doi.org/10.1193/100614eqs151m
http://dx.doi.org/10.1193/072814eqs121m
http://dx.doi.org/10.1029/JB075i026p04997
http://dx.doi.org/10.1193/1.4000067
http://dx.doi.org/10.1193/062913EQS175M
http://dx.doi.org/
http://dx.doi.org/10.1093/gji/ggaa350
http://dx.doi.org/10.1007/s00024-017-1751-3
http://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001634
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001634
http://dx.doi.org/10.1061/(ASCE)0887-3801(1994)8:2(149)
http://dx.doi.org/10.1016/j.cageo.2014.04.014
http://dx.doi.org/10.1785/BSSA0710062071
http://dx.doi.org/
http://dx.doi.org/10.1007/s10518-016-0050-1
http://dx.doi.org/10.1111/j.1365-246X.2006.02882.x
http://dx.doi.org/10.1007/s10518-022-01599-2
https://doi.org/10.1007/s10518-022-01599-2
http://dx.doi.org/10.1002/eqe.3567
http://dx.doi.org/10.1785/0120140134
http://dx.doi.org/
https://doi.org/10.3390/app9214497
http://dx.doi.org/
http://dx.doi.org/10.1007/s12517-021-06812-1
https://doi.org/10.1007/s12517-021-06812-1
http://dx.doi.org/10.1007/s00024-017-1602-2
http://dx.doi.org/
https://doi.org/10.1002/essoar.10509375.1
http://dx.doi.org/
https://doi.org/10.1016/j.soildyn.2021.106796


ANN-based Ground Motion Model for Turkey 429 

 

K  

 

K  

 

K  

 

K  

 

 

K  

 

 

K  

 

 

M  

 

 

M  

 

M  

 

 

M  

 

 

M  

M  

 

M  

N  

 

 

O  

 

P  

 

 

P  

P  

 

 

R  

 

S  

 

S  

 

S  

S  

 

T  

 

 

U  

 

 

U  

 

U  

 

U  

 

W  

 

W  

 

W  

 

W  

 

 

Y  

 

Z  

 

Z  

 

Z  

 

 

A
A

T  

t  

c  

i  

-  

d  

R  

I

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/236/1/413/7335732 by U

niversidade do M
inho user on 20 N

ovem
ber 2023
masonr y str uctures in Erzincan (Turkey). Earthq. Struct., 18 . https://doi.
org/10.12989/eas.2020.18.2.249 . 

arimzadeh , S. & Louren c ¸o, P.B., 2022. Stochastic ground motion simula-
tion of the 9th of July 1998 Faial Earthquake (Azores, North Atlantic). Au-
thor ea Pr eprints , Authorea. https://doi.or g/10.1002/essoar .10508875.3 . 

arimzadeh , S. , Ozsarac, V., Askan, A. & Erberik, M.A., 2019. Use of
simulated ground motions for the e v aluation of energy response of simple
structural systems. Soil Dyn. Earthq. Eng., 123, 525–542. 

hosravikia , F. & Clayton, P., 2021. Machine learning in ground motion
prediction. Comput. Geosci., 148, 104700, Elsevier. https://doi.org/10.1
016/j.cageo.2021.104700 . 

oboevic , S. , Guilini-Charrette, K., Castonguay, P.X. & Tremblay, R., 2011.
Selection and scaling of NBCC 2005 compatible simulated ground mo-
tions for nonlinear seismic analysis of low-rise steel building structures.
Can. J. Civ. Eng., 38 . https://doi.org/10.1139/l11-094 . 

otha , S.R. , Cotton, F. & Bindi, D., 2019. Empirical models of shear-
wave radiation pattern derived from large datasets of ground-shaking
observations. Sci. Rep., 9, 981, Nature Publishing Group UK London.
https://doi.org/10.1038/s41598- 018- 37524- 4 . 
 ubo , H. , K unugi, T., Suzuki, W., Suzuki, S. & Aoi, S., 2020. Hy-
brid predictor for ground-motion intensity with machine learning and
conventional ground motion prediction equation. Sci. Rep., 10 . https:
//doi.org/10.1038/s41598- 020- 68630- x . 
ai , P.M. , Imperatori, W. & Olsen, K.B., 2010. Hybrid broadband ground-
motion simulations: combining long-period deterministic synthetics with
high-frequency multiple S-to-S backscattering. Bull. seism. Soc. Am., 100,
2124–2142. 
eenakshi , Y. , Vemula, S., Alne, A. & Raghukanth, S.T.G., 2023. Ground
motion model for Peninsular India using an artificial neural network.
Earthq. Spectra, 39, 596–633. 
e gawati , K. , P an, T.-C. & Koketsu, K., 2005. Response spectral attenuation
relationships for Sumatran-subduction earthquakes and the seismic hazard
implications to Singapore and Kuala Lumpur. Soil Dyn. Earthq. Eng., 25,
11–25, Elsevier. 
ohammadi , A. , Karimzadeh, S., Banimahd, S.A., Ozsarac, V. & Louren c ¸o,
P.B., 2023. The potential of region-specific machine-learning-based
ground motion models: application to Turkey. Soil Dyn. Earthq. Eng.,
172, 108008, Elsevier. https://doi.org/10.1016/j.soildyn.2023.108008 . 
ohammadioun , B. & Serva, L., 2001. Stress drop, slip type, earthquake
magnitude, and seismic hazard. Bull. seism. Soc. Am., 91, 694–707. 
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