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Abstract 

 
Azores Islands are seismically active due to the tectonic structure of the region. Since the 15th century, they have been 

periodically shaken by approximately 33 moderate to strong earthquakes, with the most recent one in 1998 (Mw =6.2). 

Nonetheless, due to insufficient instrumental seismic data, the region lacks a uniform database of past real records. 

Ground motion simulation techniques provide alternative region-specific time series of prospective events for 

locations with limited seismic networks or regions with a seismic gap of catastrophic earthquake events. This research 

establishes a local ground motion model (GMM) for the Azores plateau (Portugal) by simulating region-specific 

records for constructing a homogeneous dataset. Simulations are accomplished in bedrock using the stochastic finite-

fault approach by employing validated input-model parameters. The simulation outcomes are compared with global 

empirical models, as well as a recently developed model specifically designed for the Pan-European dataset. A 

probabilistic numerical technique, namely the Monte-Carlo simulation, is employed to estimate the outcome of 

uncertainty associated with these parameters. The results of the simulations are post-processed to predict the peak 

ground motion parameters in addition to spectral ordinates. This study uses XGBoost to circumvent the difficulties 

inherent to linear regression-based models in establishing the form of equations and coefficients. The input parameters 

for prediction are moment magnitude, Joyner and Boore distance, and focal depth. The quantification of GMM 

uncertainty is accomplished by analysing the residuals, which provides insight into both inter- and intra- event 

uncertainties. The outcomes demonstrate the effectiveness of the suggested model in simulating physical phenomena. 

 

Keywords: Stochastic finite-fault ground motion simulation, Ground motion model (GMM), XGBoost, Azores 

plateau (Portugal) 

1 Introduction 

 

Throughout history, earthquakes have been the leading cause of human casualties from natural hazards, resulting 

in significant economic losses, especially in regions with high seismic activity. Despite representing only 3% of 

people affected by natural disasters, they account for 58% of all disaster-related fatalities and 21% of all known 

economic losses [1]. Global population exposure to an earthquake of moderate to severe intensity has increased 

by 93% during the last 40 years [2]. Exposure is expected to expand even further with population growth and 

urbanisation. Evaluation of seismic hazard is the inherent, unavoidable, component of risk mitigation studies, 

particularly in earthquake-prone zones. Seismic hazard analysis can be accomplished through either 

deterministic or probabilistic approaches [3]. Ground motion models (GMMs), which estimate seismic intensity 

measures (IMs) for different scenario events, are essential for seismic hazard analysis. To date, there are over 

485 empirical GMMs developed globally for Peak Ground Acceleration (PGA), 316 models for spectral 

ordinates, and 18 backbone GMMs in the literature [4,5]. These models frequently employ seismological 
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parameters, such as earthquake magnitude, fault mechanism, source-to-site distance, and site conditions, as their 

primary explanatory variables. 

In regions with adequate seismic networks and historical event data, recorded ground motions can be utilised to 

develop GMMs. If such data is unavailable, ground motion Intensity Measures (IMs) can be estimated through 

the use of simulated databases generated by various empirical, numerical, and analytical methodologies [6]. The 

simulated dataset can better represent the regional seismicity of the study areas [7–12]. Douglas [5] lists 87 

GMMs developed based on simulated records for the prediction of PGA and elastic response spectral ordinates. 

Among these models, 42 are derived based on stochastic simulation approaches [13], while the rest are derived 

based on other ground motion simulation methods [14–16]. In the literature, most GMMs are developed based 

on linear regression [17–20]. However, capturing the nonlinear behaviour of the existing ground motion 

databases using linear regression is challenging. To overcome this, Machine Learning (ML) algorithms can be 

used to capture the nonlinear and complex behaviour of the data. In engineering applications associated with the 

development of GMMs, artificial neural networks, random forest, fuzzy logic, gradient boosting, and eXtreme 

Gradient Boosting (XGBoost) are prevailing among ML techniques [21–27]. The study of [5] summarises 39 

nonparametric GMMs worldwide [18]. 

The literature review reveals that the number of region-specific GMMs is limited due to the need for high-

quality data for large-magnitude or near-field events. Therefore, challenges remain in establishing a 

homogenous ground motion dataset that is indicative of the seismological characteristics of a specific region 

[5]. To this end, this study aims at developing an ML-based backbone GMM for the region of the Azores Plateau 

(AP) in Portugal by generating a homogenous dataset. In the initial stage, the tectonic activity and the fault zones 

of the Central and Eastern Azores region, including the islands of Faial, Pico, São Jorge, Graciosa and Terceira, 

are discussed in detail. In spite of moderate to high seismicity, the region lacks recorded motions. The stochastic 

finite-fault approach by [28] is employed to overcome this issue, and a homogenous ground motion database of 

247,710 records is constructed. Simulations are performed for various scenario events with a magnitude range 

of 5.0 to 6.8, and a bin size of 0.1. All simulations are performed using region-specific input-model parameters 

proposed by [29]. In the simulations, the uncertainty regarding the rupture of representative active faults is 

considered through Monte Carlo Simulation (MCS). The simulated dataset is compared with the empirical 

models developed by [30] (BA08), [20] (AC10), and [31] (ASB14). Finally, to develop the region-specific 

GMM in the study area, the XGBoost algorithm is implemented [32]. The performance of the model is evaluated 

through coefficient of determination (R2), Pearson corelation coefficient (r), mean absolute percentage error 

(MAPE), and root-mean-square error (RMSE). The present study demonstrates the capability of the proposed 

approach in capturing the complex behaviour of earthquake motions.  

2 Study Area: Active Tectonics in the Central and Eastern Azores Islands 

 

The Azores region is dominated tectonically by the triple junction between the North American Plate, the 

Eurasian Plate, and the African Plate known as the Azores Triple Junction (ATJ) (Figure 1). AP has 

exceptionally shallow bathymetry with a roughly triangular configuration restricted by a 2-kilometre 

bathymetric line [33]. This may be related to a hotspot above the mantle plume. S and P wave velocities, 

geochemical fingerprints, gravity, crustal thickness, and uneven topography all indicate the existence of a plume 

in the region [34]. The Azores archipelago's central and eastern island groups are located near the western section 

of the Eurasian-African plate boundary [35]. Azores Gibraltar Fracture Zone is the Atlantic part of this plate 

boundary having three sections with distinctive morphology and seismotectonic regimes [35]. The Azorean part 

of the fracture zone corresponds to a wide shear zone, which accommodates the differential spreading rates 

north and south of the ATJ [33,36], and is considered to migrate towards north from east fracture zone [37]. 

The central and eastern parts of AP are in a diffuse and complex deformation zone that was sheared under a 

dextral trans-tensile regime, as shown by the region's active tectonics and volcanism. The two primary fault 

systems, each consisting of two sets of dips in opposing directions, represent the fault pattern. The fault geometry 

and kinematics indicate a maximum horizontal tensile stress axis in the NE-SW direction, a maximum horizontal 

compressive stress axis in the NW-SE direction, and a vertical intermediate compressive stress axis. Kinematic 

measurements suggest a second stress field in the eastern São Miguel and Graciosa islands that may alternate 

with the first one in time [38,39]. The interplay between volcanic activity, surface faulting, and subaerial 

geomorphological processes of denudation are reflected in the morphology of the islands. Middle Pleistocene 

to Holocene era formations are affected by these morphologies and structures. 

Tectonically regulated volcanism occurs along faults (fissure volcanic systems) or at the intersection of faults 

(central volcanoes). Low- to moderate-size earthquakes, the majority of which occur at shallow depths (about 



40 km), are indicative of the strong seismicity of this area [40]. The first seismic event recorded on Faial was in 

1614, when an earthquake struck Terceira Island. However, the major earthquakes were recorded only in the 

20th century, causing significant damage in the island, in 1924, 1926, 1980 and 1998 (Figure 1). The earthquakes 

of 1 January 1980 with a moment magnitude (Mw) of 6.9 and 9 July 1998 (Mw=6.2) were the last two damaging 

events to impact the Azores Islands [41], and are examples of large magnitude events that inflicted significant 

damage. The 1998 event had an epicentre located offshore, about 10 km NE of Faial Island. The maximum 

recorded intensity was VIII in NE Faial towards the epicentre, and significant local amplification effects were 

observed [42]. This event was not limited to Faial Island but was also felt in other islands like Pico and São 

Jorge; the maximum intensity recorded in Pico was VII, while in São Jorge, it reached VI. As a result, nine 

people died, with more than 150 people injured and over 1 500 houses damaged. The heavier destruction was 

caused at Riberinha and Espalhafatos, where the maximum intensity was observed, given the presence of many 

old stone masonry buildings in the area, which are highly vulnerable to seismic events. A 19th century bridge 

also collapsed during the process [41].  

The neotectonics of the five islands in the central and eastern AP, namely Faial, Pico, São Jorge, Terceira, and 

Graciosa, are described in detail in the subsequent sections

 

 
Figure 1 Map of central and eastern Azores with tectonic plates and records [29] 

2.1 Faial Island 

Faial Island is 21 km long, up to 14 km wide, and rises to an altitude of 1043 m at Cabeço Gordo. Two primary 

fault mechanisms on the island are WNW-ESE and NNW-SSE trending [43]. A WNW-ESE trending graben 

structure named the Pedro Miguel Graben, made up of normal dextral faults, distinguishes the eastern portion 

of Faial Island. The southern section of the structure is defined by the north-dipping Rocha Vermelha, 

Espalamaca, and Flamengos faults. At the same time, the northern half of the graben is formed by a group of 

faults dipping to the south (namely, the Ribeirinha, Eastern and Western segments of Lomba Grande faults). 

The Lomba do Meio and Lomba de Baixo faults have NE dipping south of the Caldeira. The Flamengos fault is 

connected by the Lomba de Baixo fault (Figure 2). Table 1 summarises information on the active faults in Faial 

Island. It is evident that the fault mechanism is predominantly normal for all, with the maximum expected 

moment magnitude (Mw) of 6.6 due to the potential rupture of the Espalamaca fault.  

It should be emphasised that a total of 49 stations shown by triangular symbols in Figure 2 have been considered 

for the simulations that are carried out in the subsequent section. 



 
Figure 2 Active tectonics in Faial Island with the stations used for simulations shown by triangular symbols. 

Table 1. Information on the active faults of Faial Island [35] 

No Fault Name Fault Rupture 

Length (km) 

Mw-

max  

Fault 

Mechanism 

Strike 

(°) 

Dip 

(°) 

F1 Ribeirinha 12.5 6.3 Normal 115 75 

F2-E Lomba Grande Eastern segment 12.5 6.3 Normal 115 80 

F2-W Lomba Grande Western segment 12.5 6.3 Normal 115 80 

F3 Rocha Vermelha 14.0 6.4 Normal 290 55 

F4 Espalamaca 20.3 6.6 Normal 295 70 

F5 Flamengos 11.5 6.3 Normal 290 70 

F6 Lomba do Meio  4.0 5.2 Normal 295 70 

F7 Lomba de Baixo 4.0 5.2 Normal 300 50 

F8 Capelo 8.8 5.8 Normal 290 90 

 

2.2 Pico Island 

Pico is 46 km long, up to 15.8 km wide with the highest altitude of 2351 m at Montanha do Pico. The tectonic 

structure of this island is consistent with that of Faial Island. Two major fault systems are present: WNW–ESE 

tending system with the normal dextral Lagoa do Capitão and Topo fault zones defining the Brejos Graben, 

which is covered by Pico volcano in the west and NNW–SSE where less frequent conjugate faults are identified 

by volcanic alignments including Cabeço do Sintrão fault [43]. Figure 3 presents the tectonic map of Pico Island, 

while Table 2 provides details on the main active faults. Using the correlations of [44], the maximum expected 

Mw for this island ranges from 6.1 to 6.6 with a normal faulting mechanism.  

It is worth noting that the subsequent section of the study uses a total of 119 stations for simulations, which are 

indicated by triangular symbols in Figure 3. 

 

Table 2. Information on the active faults of Pico Island [35] 

No Fault Name Fault Rupture Length 

(km) 

Mw-

max 

Fault 

Mechanism 

Strike 

(°) 

Dip (°) 

P1 Lagoa do Capitao 8.8 6.2 Normal 120 80-90 

P2 Topo 7.5 6.1 Normal 285 70-90 

P3 Cabeço do Sintrão 21 6.6 Normal 293 - 



 
Figure 3 Active tectonics in Pico Island with the stations used for simulations shown by triangular symbols. 

2.3 São Jorge Island 

The São Jorge Island is 54 km long and 7 km wide, with the highest altitude of 1053 m at the Pico da Esperança. 

The same fault systems seen in Faial and Pico characterise São Jorge Island tectonically: one normal dextral set 

of faults trending WNW-ESE, dipping north and south in both directions, and one normal left-lateral series of 

faults trending NNW-SSE [43]. The younger western half of the island is dominated by the Picos and Pico do 

Carvão fault zones, two major normal dextral WNW-ESE fault zones. In the eastern region, the Urze-São João 

fault, which exhibits a continuous scarp that is 10 km long, and the Cume Faja do Belo fault are the most 

significant WNW-ESE trending tectonic structures [43]. The major NNW-SSE trending faults are the Ribeira 

Seca fault which separates the western São Jorge from the eastern part, and the Serra de Topo fault. The tectonic 

map and the information on the active faults of this island are presented in Figure 4 and Table 3, respectively. 

According to fault dimension, the maximum anticipated Mw due to rupture of the faults, all with a normal fault 

mechanism, ranges between 6.1 and 6.8 [44]. 

It should be pointed out that Figure 4 displays a total of 70 stations that are utilised for simulations in the 

subsequent section of the study, and these stations are indicated by triangular symbols. 

 

Table 3. Information on the active faults of Sao Jorge Island [35] 

No Fault Name Fault Rupture Length (km) Mw-max Fault Mechanism Strike (°) Dip (°) 

SJ1 Picos 33 6.8 Normal 120 90 

SJ2 Pico Carvão 12 6.3 Normal 285 75-90 

SJ3 Urze-São João 15 6.4 Normal 304 80 

SJ4  Cume Faja do Belo 7.4 6.1 Normal 120 70 

SJ5 Serra do Topo 7.2 6.1 Normal 140 - 

SJ6 Ribeira Seca 7.3 6.1 Normal 160-170 - 

2.4 Terceira Island 

The elliptically shaped Terceira Island rises to 1 021 m above sea level at Santa Barbara and has a major axis 

that is 30 km long and trends WNW-ESE. Terceira is affected by three significant earthquakes in 1614, 1841, 

and 1980. The epicentres of the first two seismic events likely occurred on the island or in the area in the vicinity 

of offshore, while the third one occurred offshore between the islands of Terceira, Graciosa, and São Jorge 

[45,46]. Terceira Island's primary tectonic features are NW-SE trending faults. The Lajes Graben, which cuts 

across Terceira's older NE region, dominates the island's tectonic structure. Three significant normal-dextral 

NW-SE trending faults are the NE-plunging Fontinhas, and Cruz do Marco faults to the SW along with the SW-

dipping Lajes Fault in the NE. The Santa Bárbara Graben, which spans the Santa Bárbara volcano, is the second 

major structure. Maximum anticipated magnitudes range from Mw of 5.9 to 6.4 according to [44]. 



It is noteworthy that Figure 5 illustrates a total of 104 stations that have been utilised for simulations in the 

subsequent section of the study, and these stations are marked by triangular symbols. 

 

 
Figure 4 Active tectonics in São Jorge Island with the stations used for simulations shown by triangular 

symbols. 

Table 4. Information on the active faults of Terceira Island [35] 

No Fault Name Fault Rupture Length (km) Mw-max Fault Mechanism Strike (°) Dip (°) 

T1 Lajes 8.2 6.1 Normal 138 70-90 

T2 Fontinhas 9.0 6.2 Normal 313 - 

T3 Cruz do Marco 5.0 5.9 Normal 310 70 

T4 Santa Bárbara 12.9 6.4 Normal 308 70 

 

 

 
Figure 5 Active tectonics in Terceira Island with the stations used for simulations shown by triangular 

symbols. 

2.5 Graciosa Island 

Graciosa is an elliptical-shaped volcanic island with a 12 km length and 7 km width and a maximum elevation 

of 402 m on the caldera's southern rim. This island has an NW-SE normal tectonic structure. Several faults 



trending NW-SE to NNE-SSW, which have grown into significant fault scarps, cut through the old volcanic 

complexes of Serra das Fontes and Serra Branca [38,47]. Among them, there are the North and South Serra 

Branca Faults, the South Serra das Fontes Fault along with the Saúde-Hortelã Fault. The East Serra das Fontes 

fault, which is symbolised by a massive scarp facing southeast, is the main NNE-SSW-trending faulting 

mechanism. Correlations provide maximum anticipated Mw ranging from 5.7 to 5.9 due to the rupture of all 

faults [44].  

It is worth mentioning that Figure 6 displays a total of 17 stations that have been employed for simulations in 

the subsequent section of the study, and these stations are identified by triangular symbols. 

 

Table 5. Information on the active faults of Graciosa Island [35] 

No Fault Name Fault Rupture Length 

(km) 

Mw-

max 

Fault 

Mechanism 

Strike 

(°) 

Dip 

(°) 

G1 Saúde-Hortelã 5.0 5.9 Normal 140 - 

G2 South Serra das 

Fontes 

4.6 5.8 Normal 126 - 

G3 North Serra Branca 4.8 5.9 Normal 302 - 

G4 South Serra Branca 3.2 5.7 Normal 305 - 

G5 East Serra das Fontes 4.6 5.8 Normal 340 - 

 

 
Figure 6 Active Tectonics in Graciosa Island with the stations used for simulations shown by triangular 

symbols. 

3 Region-Specific Simulated Strong Ground Motion Database 

 

The Eastern and Central Azores Islands have similar neotectonics and geology. By referring to Section 2, it is 

evident that most of the faulting structures responsible for major events can be identified on Faial Island. Yet, 

the maximum expected Mw in Faial Island is reported as 6.6, while this value is 6.8 due to the potential rupture 

of the Picos fault in São Jorge Island. In this study, in order to cover all magnitude ranges in GMM, possible 

fault ruptures on both Faial and São Jorge Islands are modelled as scenarios to represent the potential 

earthquakes in the AP. A simulated database is formed due to the assumption in the rupture of ten faults, nine 

in Faial Island as listed in (Table 1) and one in São Jorge Island as the first fault listed in Table 3. These faults 

are shown in red colour in Figure 2 and Figure 4. Following the ground motion simulation methodology 

proposed, the scenario events, and input-model parameters with the generated database are discussed in detail 

next. 

 



3.1 Ground Motion Simulation Methodology 

The stochastic methodologies encompass both point-source and finite-fault methods. The point-source 

approach, initially proposed by [48], includes the following shear wave acceleration spectrum at an observation 

point: 

( ) ( ) ( )0/ ( )2 2( ) (2 ) / 1 ( / ) ( ) ( )
ffR Q f
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 
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where 𝑀0 represents the seismic moment in Nm, while 𝑓𝑐 denotes the corner frequency in hz, C is the scaling 

constant representing the radiation pattern for shear waves, amplification on free surface amplification, the 

division of horizontal components into two, crustal density, and shear wave velocity. The term in the squared 

parenthesis corresponds to an ω-2 source spectrum, as proposed by [49]. 𝐺(𝑅) is geometrical spreading 

representing distance (𝑅) dependent attenuation, and 𝑄(𝑓) is the quality factor representing frequency (𝑓) 

dependent anelastic attenuation, 𝜅 is zero-distance kappa for upper crust attenuation, and 𝑆(𝑓) is the frequency 

dependent soil amplification factor.  

The point-source approach was later expanded to introduce the finite-fault method [50–52]. In subsequent 

developments, Boore [53] enhanced the approach proposed by [52]. Additional modifications and improvements 

were made, such as scaling high-frequency motions based on the integral of the squared acceleration spectrum 

rather than the integral of the squared velocity spectrum. Moreover, the truncation of the sub-fault time series 

was eliminated. In this modified version, the duration of the sub-fault motions is determined by the inverse of 

the corner frequency associated with each sub-fault.  

Using the EXSIM12 platform [54], this study employs the latest version of the stochastic finite-fault ground 

motion simulation methodology to model acceleration time series of scenario earthquakes [55]. The algorithm 

proposed by [52], which was developed based on the original FINSIM code by [51], is enhanced in this 

technique by adding the improvements suggested by [53]. The low-frequency component of the simulations is 

strengthened by the improved stochastic method. By considering factors including earthquake magnitude, fault 

geometry, strike, dip, slip distribution, density, and rupture velocity, this method can recognise the fault rupture. 

To receive the seismic signal in the time domain at any observation site, the source contribution is combined 

with the attenuation parameters and site effects.  

The ruptured fault plane is depicted as a grid of smaller sub-sources in the stochastic finite-fault approach by 

assuming a point-source for each sub-source with a ω-2 source spectrum, as proposed by [49]. Depending on 

how far a sub-source is from the hypocentre, each sub-source ruptures with an appropriate time delay. The time 

domain summation of the contributions from the delayed sub-sources is carried out as follows: 
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where A(t) represents the total seismic signal at time t, N is the total number of sub-sources, YI demonstrates the 

seismic signal of ith sub-source which is its inverse Fourier transform [50,53], ∆tI is the sum of the fracture 

initiation and time delay due to the distance of the ith sub-source from the hypocentre, the term TI  relates to a 

fraction of rise time considered for additional randomisation and finally, the term HI resembles the normalisation 

factor of the ith sub-source introduced for the conservation of energy with the following formula: 
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where f
0
 is the corner frequency of the main fault plane, f

j
 is the jth frequency ordinate, M0 is the total seismic 

moment, and the terms M0i and f
ci

 are the seismic moment and corner frequency of the respective ith sub-source 

formulated as follows: 
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(5) 

where sI is the slip of the ith sub-source in Equation (2). In Equation (3), the term NR represents the total number 

of sub-sources which are activated when the ith sub-source triggers and ∆σ is the stress drop in bars. The term 

PP is the pulsing percentage. The algorithm is based on a dynamic corner frequency approach where the corner 



frequencies of the activated sub-sources descend with rupture progress until reaching a specified level which is 

PP. For the rest sub-sources, the corresponding corner frequency remains constant. 

 

3.2 Input Parameters 

In this study, simulations are performed on a total of 23 scenario events with varying magnitudes and ruptured 

fault planes. The information on the considered scenario events is summarised in Table 6. Karimzadeh and 

Lourenço [56]  simulated the 1998 Faial (Mw =6.2) event and provided region-specific input-model parameters 

based on simulation validations against observed motions from this event. In this study, the validated input-

model parameters of [56] are calibrated for the scenario events. To account for uncertainty in the parameters 

representing source and attenuation effects, however, they are here assumed to be random variables.  

Table 7 gives information on the deterministic input-model parameters, whereas Table 8 lists the probabilistic 

parameters and their Probability Distribution Functions (PDFs). To this end, the study by [29] is used to 

implement regional models with their PDFs. Parameters of  

 

Table 8 are utilised to perform 30 MCSs for every event, each with distinct combinations. Finally, simulations 

are performed in a total of 359 nodes at bedrock, as displayed above in Figure 2 to Figure 6.   



Table 6. Information on the scenario events 

Scenario Mw Strike (°) Dip (°) Length (km) Width (km) Fault No Region 

1 6.3 115 75 12.5 12.5 F1 Faial 

2 6.1 115 75 12.0 12.0 F1 Faial 

3 5.5 115 75 7.0 5.5 F1 Faial 

4 6.3 115 80 12.5 12.5 F2E Faial 

5 6.2 115 80 12.3 12.3 F2E Faial 

6 6.3 115 80 12.5 12.5 F2W Faial 

7 5.4 115 80 6.0 5.0 F2W Faial 

8 6.4 290 55 14.0 14.0 F3 Faial 

9 5.9 290 55 10.0 9.0 F3 Faial 

10 5.3 290 55 5.0 5.0 F3 Faial 

11 6.6 295 70 20.3 14.3 F4 Faial 

12 6.5 295 70 19.0 14.0 F4 Faial 

13 6.0 295 70 11.0 10.0 F4 Faial 

14 6.3 290 70 12.5 12.5 F5 Faial 

15 5.7 290 70 8.5 6.5 F5 Faial 

16 5.2 295 70 4.0 4.0 F6 Faial 

17 5.0 295 70 4.0 3.0 F6 Faial 

18 5.2 300 50 4.0 4.0 F7 Faial 

19 5.1 300 50 4.0 3.5 F7 Faial 

20 5.8 290 90 8.8 8.7 F8 Faial 

21 5.6 290 90 8.0 6.0 F8 Faial 

22 6.8 120 90 26.0 16.0 SJ1 Sao Jorge 

23 6.7 120 90 33.0 18.0 SJ1 Sao Jorge 

 

Table 7. Deterministic input-model parameters  

 Parameter Value 

Crustal Thickness, D (km) 13 

Crustal Density (g/cm3) 

 0.0 2.67

 2.5 2.77

 8.0 2.86

 14.0 2.93

Depth km

Depth km

Depth km

Depth km

= →

= →

= →

= →

[29] 

Shear Wave Velocity (km/s) 

 0.0 3.1

 2.5 3.7

 8.0 4.2

 14.0 4.6

Depth km

Depth km

Depth km

Depth km

= →

= →

= →

= →

[29] 

Shear Wave Velocity/Crustal Velocity 0.8 

Geometric Spreading 

1.0

0.0

0.5

1.5

1.5 2.5

1.5

R R D km

R D km R D km

R R D km

−

−



 



[29]  

Duration Model (R in km) T0+0.1R 

Window Type Saragoni-Hart 

Damping 5% 

Slip Weight Random 

Iseed 309 

 

 

 



Table 8. Probabilistic input-model parameters  

 Parameter Value PDF  

Hypocentre Location  Along the length and width Uniform 

Pulsing Percent  30-50  Uniform 

Kappa 0.075±0.02 [29] Uniform 

Stress Drop (bars) 110±20 [29] Lognormal  

Quality Factor ( ) 0.69 0.0976 11 f  [29] Lognormal  

 

3.3 Ground Motion Database 

Simulations of this study result in 247,710 ground motion records for the entire AP. Figure 7a shows histograms 

in terms of the seismological features of the Azores ground motion dataset, including Mw, Joyner and Boore 

distance (R
JB

), and Focal Depth (FD). The scenario events range in Mw from 5.0 to 6.8, grouped into 0.1 

magnitude bins. The probability is highest for a magnitude of 6.3, corresponding to the characteristic earthquake 

of several fault planes. The R
JB ranges between 0 to 150 km representing more near-field data than far-field. 

Lastly, FD changes between 5.0 and 17.0 km, which is indicative of shallow events. The distribution of Mw 

versus R
JB is presented in Figure 7b. Finally, the normalised 5% damped Pseudo Spectral Acceleration (PSA) of 

the Azores dataset for different magnitude intervals is shown in Figure 8. This figure displays the normalised 

PSA by their respective PGA values. In addition, the mean PSA, and a range of probable spectral values by one 

standard deviation (σ) above and below the mean are presented. In accordance with physics, simulations of 

earthquakes with greater magnitudes exhibit higher spectral ordinates at higher periods when contrasted with 

earthquakes of smaller magnitudes. Moreover, the scatter plots serve as evidence of the uniformity of the dataset 

across all magnitudes and distances, highlighting one of the advantages of the ground motion simulations.  

  
a) b) 

 

Figure 7 a) Histograms of seismological characteristics of the Azores ground motion dataset, and 

b) Distribution of Mw versus R
JB

for the Azores ground motion dataset. 

 
Figure 8  Normalised 5% damped PSA of the Azores dataset. 

3.4 Validations of the Simulated Dataset 

Simulations are typically validated by comparing their ability to estimate observed records of past earthquakes 

or, in cases where recorded motions are not available, by comparing their trend with appropriate existing GMMs. 

As previously stated, the input-model parameters used for simulations of this study are calibrated based on 



region-specific parameters that have already been validated for the 1998 Faial event with a magnitude of 6.2 

[56]. On the other hand, the validation process for simulated ground motions with existing GMMs involves 

comparing the simulated ground motion outcomes to the expected values generated by established equations. 

This is done to assess the accuracy and reliability of the simulated data and to determine if it aligns with the 

expected results generated by the equations. If the simulated data matches the predictions of the equations, it 

can be considered a validation of the simulation methodology. This process is often used in seismology research 

and engineering to evaluate the performance of ground motion simulations and to determine their suitability for 

practical applications. 

In this study, the simulated dataset is validated using well-known GMMs Boore and Atkinson [30] (BA08), 

Akkar and Çaǧnan [20] (AC10), and Akkar et al. [31] (ASB14). The comparison of the simulated dataset for 

different magnitudes against the GMMs is plotted in Figure 9. According to the results, the simulations are 

consistent with the AC10 relationship for PGA regardless of the magnitude. However, the PGV results vary 

depending on the magnitude of the scenario event. For magnitudes smaller than 5.9, the results align more with 

BA08, while as the magnitude increases, the trend becomes closer to the attenuation of the ASB14 model. This 

further emphasises the significance of developing GMMs specific to the region. 

 

(a) 

 
(b) 



 
Figure 9  Attenuation of simulations in terms of (a) PGA and (b) PGV against empirical GMMs. 

4. Ground Motion Modelling Methodology 

The common method for predicting ground motion IMs, such as PGA, PGV or PSA, is to utilise GMMs. These 

models are typically developed through empirical approaches that involve statistical regression analysis of large 

datasets of ground motion intensities [57]. Since there is a significant amount of variability or scatter in the 

observed ground motion data for each IM, GMMs generally provide a probability distribution of possible ground 

motion outcomes, instead of a single deterministic value:  
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where η
i
 is the inter-event residual component and εij is the intra-event residual component in the natural 

logarithm scale, i denotes the index of the earthquake event, and j represents the station's index. The functional 

form in Equation 6 is modelled using XGBoost algorithm. Two components of residuals in GMMs, namely 

inter-event and intra-event residuals, are assumed to be independent, normally distributed random variables with 

zero mean and standard deviations of τ and σ, respectively. The inter-event and intra-events residuals are 

assumed independent; therefore, the total standard deviation for a given GMM is calculated as the square root 

of the sum of squares of the two types of residuals. This is expressed mathematically as: 

 
(7) 

where 𝜙 is the total standard deviation, 𝜎 is the intra-event standard deviation, and 𝜏 is the inter-event standard 

deviation. 
The total residual

ij  is obtained by: 

ln lnsim m

ij i ij ij ijIM IM  = + = −  (8) 

 

where ln
sim

ijIM is the simulated value (in terms of PGA, PGV or PSA) and ln
m

ijIM is the GMM prediction value. 

The inter-event error for each earthquake event can be described as follows: 
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(9) 

As in this study the number of records in each event is large (ni =359) and niτ
2 is much larger than 2 , the 

approximate equation can accurately measure the inter-event residuals [58]. Finally, the intra-event residuals 

can be obtained as follows: 

ij ij i  = −  (10) 

The GMM of this study is developed using the XGBoost algorithm. XGBoost [32] is a powerful ML algorithm 

that has become increasingly popular in recent years due to its superior performance in various applications. 

This is an ensemble-based learning algorithm that combines multiple decision trees to make accurate predictions 

by minimizing prediction errors. It is based on the gradient boosting framework, which involves iteratively 

adding new decision trees to the model and optimizing the model's parameters to minimize the loss function. 

XGBoost's unique features include its ability to handle missing values, its built-in regularization techniques to 

prevent overfitting, and its capability to handle both regression and classification tasks. Additionally, the 

algorithm has been shown to be highly scalable, making it suitable for large datasets. Despite its high 

performance, XGBoost requires careful parameter tuning and validation to achieve optimal results in a specific 

application. Tuning the model parameters is difficult but important as the accuracy of the predictions done with 

ML algorithms highly depends on them. Bayesian optimization is a powerful mathematical technique that can 

be used to efficiently tune hyperparameters of complex models. It is particularly effective in optimizing black-

box functions that take a long time to evaluate [59]. This approach has gained popularity in fine-tuning 

hyperparameters of ML algorithms due to its flexibility in optimizing derivative-free functions [60]. In 

comparison to generic optimization techniques such as grid and random search, Bayesian optimization is 

considered to perform better [60,61]. Therefore, it is employed in this study to optimize the hyperparameters of 

the XGBoost model. 

5. Results and Discussion 

The section presents the outcomes of the developed GMM, whereby Figure 10 assesses the efficacy of the model 

by examining the concurrence between the predicted and observed values of the chosen IMs, which include 

PGA, PGV, and PSA at T=0.3 s and T=1.5 s in the natural logarithmic scale. Plots are generated for the training 

and testing datasets and juxtaposed against the ideal fit, with a lower degree of variation to the ideal fit indicating 

superior model performance. The analysis revealed that the model performed well for both datasets, as 

evidenced by the coefficient of determination exceeding 0.95, implying a high degree of accuracy in the 

predictions. 

 

(a) (b) 

  
(c) (d) 



  
Figure 10  Observed versus predicted values of the developed GMM for the selected IMs including 

(a) ln(PGA), (b) ln(PGV), (c) ln(PSAT=0.3 s), and (d) ln(PSAT=1.5 s).  

The performance indicators of the developed model, including R2, r, MAPE, and RMSE are presented in Figure 

11. The results indicate that for all IMs, the model's performance is acceptable, with both indicators 𝑅2 and 𝑟 

exceeding 0.90. However, for PGV and larger periods of the PSA, a decrease in these parameters is observed 

when compared to PGA and PSA with smaller periods (less than 0.3 s). This decrease is further confirmed by 

the error indices, namely RMSE and MAPE, where an increase is observed by these indicators. These findings 

suggest that the model may perform better for PGA and spectral ordinates of shorter periods compared to PGV 

and spectral ordinates of longer periods, which should be taken into consideration when applying the model in 

practice. This observation is also consistent with the existing empirical GMMs [20,30,31]. 

 
Figure 11  Model performance indicators for different IMs. 

The model's potential bias is evaluated by examining the inter-event and intra-event uncertainties in relation to 

source- and site-related parameters, Mw and RJB, respectively, as shown in Figure 12 and Figure 13. The residuals 

are found to be unbiased for all Mw and RJB ranges, as evidenced by the absence of any observable patterns in 

the mean residual across all considered IMs, and the inter-event and intra-event residuals are consistent with 

previous research [62], ranging from -1.5 to 1.5 and -0.2 to 0.2, respectively. P-values are also calculated and 

displayed at a significance level of 0.05 to verify the null hypothesis of unbiased estimates. The GMM is deemed 

independent of explanatory variables because the mean residuals for all IMs fluctuate around zero. Furthermore, 

unlike GMMs based on real records, the uncertainty of residuals remains constant as magnitude increases or 

distance decreases, indicating a significant advantage of ground motion simulations over real datasets. 

(a) (b) 

  
(c) (d) 



  
Figure 12  Distribution of the inter-event residuals with respect to Mw for the selected IMs including (a) ln(PGA), 

(b) ln(PGV), (c) ln(PSAT=0.3 s), and (d) ln(PSAT=1.5 s). 

 

(a) (b) 

  
(c) (d) 

  
Figure 13  Distribution of the intra-event residuals with respect to R

JB
 for the selected IMs including 

(a) ln(PGA), (b) ln(PGV), (c) ln(PSAT=0.3 s), and (d) ln(PSAT=1.5 s).  

Figure 14 presents the standard deviation of inter-event, intra-event and total residuals for PGA, PGV, and all 

spectral ordinates. The analysis shows that the inter-event uncertainty for all spectral values is smaller than the 

intra-event uncertainty across all period ranges, which is consistent with previous literature. However, the 

smaller range of inter-event uncertainty could be attributed to the use of the same ground motion simulation 

approach in a single region. The total residual ranges from 0.2 to 0.4, with an increase in value observed with 

an increase in the spectral period, in line with previous findings. Furthermore, the XGBoost-GMM model 

exhibited an acceptable uncertainty range and performed well when compared to existing models [62]. 

 



Figure 14  Standard deviation of the inter-event, intra-event, and total residuals for PGA, PGV, and all spectral 

ordinates. 

The proposed GMM is subjected to further evaluation to determine its ability to represent physics-based 

phenomena regarding the behaviour of real earthquakes. To this end, the results for various magnitude and 

distance combinations, utilising the FD of 8.0 km, are compared. Figure 15 illustrates the estimated PGA, PGV, 

and PSA for periods T=0.3 s and T=1.5 s, for a range of magnitudes between 5.0 and 6.8. This evaluation is 

conducted for five RJB values of 1 km, 10 km, 30 km, 70 km, and 130 km. The results indicate that an increase 

in magnitude and a decrease in the distance leads to a corresponding rise in the levels of PGA, PGV, and PSA 

at all period ranges. It can be inferred that the model's ability to accurately capture the trends in earthquake 

records demonstrates its capability to represent actual earthquake data.  

(a) (b) 

  
(c) (d) 

  
Figure 15  Variation of the selected IMs including (a) ln(PGA), (b) ln(PGV), (c) ln(PSAT=0.3 s), and 

(d) ln(PSAT=1.5 s) with respect to Mw using R
JB

 of 1 km, 10 km, 30 km, 70 km, and 130 km and FD of 8.0 km. 

Furthermore, the trend of the GMM is compared against the change in RJB for different magnitudes (5.0, 6.0, 

and 6.8) using various values of RJB between 0-150 km. The results are plotted in Figure 16. The outcomes show 

that an increase in RJB leads to a decrease in the PGA, PGV, and PSA levels at all period ranges, indicating that 

the proposed GMM effectively captures the distance-dependent attenuation. Consistent with the former 

observation, an increase in magnitude results in an increase in the ground motion amplitudes. It is also evident 

that for large magnitudes and smaller distances, the performance of the model remains the same, which 

emphasises the advantage of simulations over the use of real datasets. 

 

(a) (b) 



  
(c) (d) 

  
 

Figure 16  Variation of the selected IMs including (a) ln(PGA), (b) ln(PGV), (c) ln(PSAT=0.3 s), and (d) 

ln(PSAT=1.5 s) with respect to R
JB

 using Mw of  5.0, 6.0, and 6.8 and FD of 8.0 km. 

Subsequently, the variation of PSA concerning RJB is examined for three distinct moment magnitudes (5.0, 6.0, 

and 6.8). The results are illustrated in Figure 17. The results reveal that as the distance increases, the peak value 

of the PSA shifts towards longer periods, which aligns with the physical characteristics of distance-dependent 

damping of ground motions. Furthermore, in accordance with established earthquake physics, the event 

magnitude determines the extent to which the peak shifts. 

Overall, the findings of the study suggest that the proposed XGBoost-GMM is capable of capturing the 

behaviour of empirical GMMs with minimal seismological data and without the need for nonlinear regression 

with multiple coefficients. The model estimates PGA, PGV, and PSA between periods of 0 and 2 s for the 

Azores Plateau, and its implementation requires fewer computations (as detailed in Appendix A). Furthermore, 

the proposed XGBoost-GMM has the potential to be applied in future studies for simulations performed on the 

surface considering local soil effects. Finally, the proposed model represents a promising approach for 

estimating ground motion parameters for seismic hazard analysis in the Azores Plateau.  
  



 
Figure 17  Variation PSA with respect to R

JB
 (including 10 km, 70 km, and 130 km) using Mw of 5.0 and 6.8 

and FD of 8.0 km. 

6. Conclusions 

This paper proposes a machine learning-based backbone ground motion model for the Azores Plateau in 

Portugal, which is built using a simulated, homogenous dataset for the region. The study first discusses the 

tectonic activity and fault zones in the Central and Eastern Azores region, where despite the high seismic 

activity, there is a lack of recorded ground motion data. To address this challenge, the study uses the stochastic 

finite-fault approach to generate a region-specific ground motion dataset through scenario event simulations, 

accounting for the uncertainty in the rupture of active faults and path attenuation. To cover all magnitude ranges, 

this study models possible fault ruptures on both Faial and São Jorge Islands as scenarios to represent potential 

earthquakes in the Azores Plateau. A simulated database is generated by assuming the rupture of ten faults, nine 

on Faial Island, and one on São Jorge Island with maximum magnitude boundary of 6.8.  

The results of simulations are verified against the well-known empirical ground motion models. The XGBoost 

algorithm is then used to develop a region-specific GMM, which is known for its accuracy, flexibility, and 

computational speed in regression problems. Finally, the performance of the developed GMM is compared to 

the real records of the 1998 Faial earthquake. 

A concise summary of the findings of this study is as follows: 

• The neotectonics and geology of the Eastern and Central Azores Islands are found to be similar, with 

most faulting structures responsible for major events identified on Faial Island. However, the potential 

rupture of the Picos fault in Sao Jorge Island can result in a maximum expected Mw of 6.8, which is 

higher than that reported for Faial Island (i.e., 𝑀𝑤=6.6). 

• The developed simulated dataset effectively mimics the real behaviour of earthquake motions, as 

evidenced by the increase in amplitudes of spectral ordinates at higher periods with an increase in 

earthquake magnitude. This observation further validates the accuracy and correctness of the 

simulations.  

• This study successfully validates the simulated dataset using well-known GMMs, including Boore and 

Atkinson [30] (BA08), Akkar and Çaǧnan [20] (AC10), and Akkar et al. [31] (ASB14), as the trend of 

simulated intensity measures lies within one standard deviation of the predicted mean values from these 

equations. The results indicate that the simulations are consistent with the AC10 relationship for PGA 

regardless of the magnitude, while PGV results vary depending on the magnitude of the scenario event. 

This observation highlights the importance of developing region-specific GMMs to ensure accurate 

ground motion simulations for practical applications.  

• The developed XGBoost-GMM demonstrated a strong performance for both the training and testing 

datasets, with a high level of agreement observed between the predicted and observed values of the 

selected IMs, such as PGA, PGV, and PSA at T=0.3 s and T=1.5 s. Furthermore, acceptable model 

performance values are obtained for all IMs, with the coefficient of determination and correlation 

coefficient values exceeding 0.90. However, a decrease in these performance indicators is observed for 

PGV and larger periods of the PSA compared to PGA and PSA with smaller periods, as confirmed by 

error indices. This suggests that the model may perform better (i.e., with less uncertainty) for PGA and 

spectral ordinates of shorter periods compared to longer periods and PGV, consistent with existing 

empirical GMMs. These results should be taken into consideration when applying the model in 

practice. 



• The study evaluates the potential bias of the developed GMM by analysing the inter-event and intra-

event uncertainties with respect to source and site parameters. The residuals are found to be unbiased 

across all considered intensity measures and ranges of magnitude and distance, as evidenced by the 

absence of observable patterns in the mean residual. P-values also confirm the null hypothesis of 

unbiased estimates. The GMM is deemed independent of explanatory variables, as the mean residuals 

for all intensity measures fluctuate around zero. Additionally, unlike GMMs based on real records, the 

residual uncertainty remains constant with the increasing magnitude or decreasing distance, 

highlighting the advantage of using simulated ground motions over real datasets. 

• The developed XGBoost-GMM model exhibited an acceptable uncertainty range and performed well 

compared to existing models, as shown by the inter-event, intra-event, and total residuals for PGA, 

PGV, and all spectral ordinates. The analysis revealed that the inter-event uncertainty is smaller than 

the intra-event uncertainty for all spectral values, consistent with previous literature, but could also be 

attributed to the use of the same ground motion simulation approach in a single region. The total 

residual increases with an increase in the spectral period, in line with previous findings. 

• Based on the evaluation conducted, the XGBoost-GMM model is found to effectively mimic real 

earthquake phenomena by demonstrating magnitude-dependent increase and distance-dependent 

decrease. The analysis reveals that as the distance increases, the peak value of the PSA shifts towards 

longer periods, which aligns with the physical characteristics of distance-dependent damping of ground 

motions. The event magnitude also determines the extent to which the peak shifts, which is consistent 

with established earthquake physics. Furthermore, the performance of the model remains the same for 

large magnitudes and smaller distances, which highlights the advantage of simulations over real 

datasets. These findings provide evidence of the model's reliability in effectively simulating and 

analysing earthquake events. 

 

Overall, the findings of this study have significant implications for seismology research and engineering. The 

XGBoost GMM is limited in its ability to extrapolate beyond the input range of predictor variables due to the 

machine learning algorithm's lack of adherence to underlying physical formulations. Therefore, it is advisable 

to utilize the model that has been developed for the Azores Plateau for shallow seismic events with a magnitude 

(𝑀𝑤) range of 5.0 to 6.8 and a distance (𝑅𝐽𝐵) of up to 150 km in the bedrock. Finally, it should be acknowledged 

that the GMM proposed in this study serves as a backbone model. However, to account for soil effects, future 

research should be carried out with additional verifications on the seismic data collected from the stations that 

captured the Faial earthquake of 1998. This would enhance the accuracy and reliability of the GMM for seismic 

hazard assessment in the future. 
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Appendix A. Creating a Web-Based Software Application 

 

In this study, Streamlit was employed to construct a graphical user interface (GUI) tool that enables easy access 

to the GMM developed by XGBoost. The code for the GMM can be found at 



https://github.com/amirxdbx/GMM_Azores. The user interface of the tool is illustrated in Figure A, and it can 

be accessed at https://amirxdbx-gmm-azores-deploy-36glao.streamlit.app/. 

As depicted in Figure A, the tool allows users to define the characteristics of a scenario earthquake in terms of 

Mw, R
JB

, and FD. The software provides the predicted values of PGA, PGV, and PSA for periods between 0 and 

2.0 seconds. Overall, this web-based application software provides a user-friendly interface for estimating 

ground motion parameters in the bedrock using the proposed XGBoost-GMM for the Azores Plateau. 

 

 
Figure A GUI of the XGBoost-GMM 
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