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Abstract
This paper explores the use of Artificial Neural Networks (ANN) for the rocking
problem. The paper adopts rigid rocking blocks of different sizes and slenderness,
which undergo rocking motion without sliding and bouncing when subjected
to recorded earthquakes. This research focuses on the cases where the blocks
overturn or safely return to their initial (rest) position at the end of the ground
shaking. An ANN model is trained to efficiently categorise the response into
overturning or safe rocking using the structural parameters, ground motion
characteristics, and the coefficient of restitution as input. The results show the
substantial contribution of velocity and frequency characteristics of the ground
motion to overturning. In addition, ANN is used to predict the response ampli-
tude and identify the most critical input variables that govern safe rocking. The
analysis reveals that rocking amplitude is governed by a combination of duration,
frequency, and intensity characteristics of the ground excitation. Interestingly,
themaximum incremental velocity (MIV), a novel intensitymeasure for the rock-
ing literature, shows a substantial correlationwith the rocking amplitude. In this
context, this paper proposes closed-form expressions using the most influential
input variables to provide a quick, yet adequately accurate, response prediction.
Finally, this study pays special attention to the contribution of the coefficient of
restitution, which, in general, is less critical to the peak safe rocking response,
while it becomes more important to the overturning response.

KEYWORDS
artificial neural networks, coefficient of restitution, intensity measures, machine learning,
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1 INTRODUCTION

Rocking is regarded as a non-traditional seismic isolation technique that provides stability to the structure due to the
activation of its rotational inertia.1,2 Thus, it finds application to building contents,3,4 masonry structures,5–7 as well as
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2 BANIMAHD et al.

buildings8 and bridges.9–13 Despite its merits, rocking motion is highly nonlinear14 and nonsmooth.15 Therefore, it faces
marked challenges. Rocking is particularly sensitive to characteristics of the ground excitation.16,17 Psycharis et al.18 illus-
trated the importance of peak ground velocity (PGV) over peak ground acceleration (PGA) to rocking response; similar
results were later found in Sieber et al.19 Dimitrakopoulos and Paraskeva20 highlighted the contribution of PGV and a
combination of PGAwith a frequency characteristic (PGA/PGV) to rocking amplitude. Later, Petrone et al.21 and Lachanas
et al.22 verified the importance of PGV and PGA to the overturning of slender and stocky rocking structures, respectively.
Liu et al.23 showed the influence of the combined consideration of peak and frequency characteristics of the ground exci-
tation on rocking response. Further accreditation of velocity and frequency characteristics as optimal intensity measures
(IMs) (i.e., exhibiting a strong correlation with the response) came from Pappas et al.24 and Kavvadias et al.25 Recently,
Giouvanidis and Dimitrakopoulos26 revealed the remarkable contribution of duration-based characteristics, such as the
uniform duration tuni and cumulative absolute velocity of exceedance CAVexc, to rocking amplification (i.e., rocking
without overturning).
Due to the stochastic nature of earthquakes27 and the sensitivity of the dynamic rocking response to different seismic

signal characteristics, most studies investigated one or two ground motion parameters, formulating scalar or bivariate
IMs, respectively. However, a scalar or bivariate IM could be insufficient to represent the impact of the seismic signal on
demand estimation. On the other hand, introducing multiple IMs to conventional methods, for example, regression mod-
els, can be computationally demanding. Thus, the relation between rocking response and seismic signal is not yet fully
understood. Machine learning (ML) is a promising means that can reveal the underlying nonlinearity of such a relation.28
In this context, Xie et al.29 used ML to identify velocity characteristics as optimal and propose closed-form expressions
of fragility estimates for a single-column rocking bridge. Hu et al.30 adopted various ML methodologies, such as linear
and ridge regression, decision trees, random forests, extreme gradient boosting and adaptive boosting, to propose seis-
mic demand models of self-centring dual rocking core systems. Similarly, Gajan31 adopted k-nearest neighbours, support
vector machines, and random forests to predict the peak rotation and safety factor against the overturning of rocking
structures under earthquakes. Recently, Achmet et al.32 adopted k-nearest neighbours and support vector machines to
classify rocking response into safe rocking and overturning.
The application of ANN in the rocking literature has not yet received the attention it deserves, despite being widely

employed in various engineering fields,33–37 showing their superiority as response predictors.38–41 Therefore, this work
explores the ability of ANNmodels to predict the relation between seismic signal and rocking responsewithout the need to
use complexmathematicalmodels. Specifically, this work investigates theANNmodel’s ability to predict rocking response
and, importantly, identify the critical groundmotion characteristics that govern rocking behaviour. Both safe rocking and
overturning are considered, while this study gives special attention to the role of the coefficient of restitution in rocking
response. From a practical engineering viewpoint, using ML methodologies might be challenging. Thus, this study also
proposes simple closed-form expressions with respect to the most optimal ground motion IMs for a rapid, yet adequately
accurate, response prediction.
The outline of this paper is as follows. Section 2 presents the analytical dynamics of rocking motion. Section 3

introduces the engineering demand parameter that captures the seismic response of a rigid rocking block, and the
intensity measures that represent different attributes of the ground excitation. Section 4 provides an overview of the
adopted methodology, while Section 5 introduces the need to reduce (linear) correlations among the input variables.
Section 6 provides a detailed description of the ANN architecture. Section 7 offers insights into the binary distinction
between safe rocking and overturning (i.e., classification problem), whereas Section 8 focuses on the prediction of the
(safe) rocking amplitude (i.e., regression problem). Both Sections 7 and 8 give special attention to the input variables
that contribute the most to each problem. In addition, Section 8 proposes seismic demand models based on the most
influential input variables for a quick and adequately accurate estimation of the rocking amplitude. Finally, Section 9
summarises the main outcomes of this paper.

2 ANALYTICAL ROCKING DYNAMICS

The slender rocking block of Figure 1 is an archetypal structural model that describes the dynamics of a broad class of
rocking configurations.26 When the block is subjected to a horizontal ground excitation, it uplifts and starts rocking once
the ground acceleration exceeds the minimum threshold of:

|||𝑢̈𝑔|||min = 𝑔 tan 𝛼 (1)
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F IGURE 1 The archetypal rocking block model under a horizontal ground excitation.

where g denotes the gravitational acceleration, and 𝛼 is the slenderness angle 𝛼 = 𝑡𝑎𝑛−1 (𝑏∕ℎ) with 𝑏 being the block’s
half-width and ℎ its half-height (Figure 1).
After rocking initiation, moment equilibrium with respect to the pre-defined pivot (contact) points yields the equation

that describes the rocking motion of the block.

𝜃̈ = −𝑝2
[
sin (𝛼s𝑔𝑛 (𝜃) − 𝜃) +

𝑢̈𝑔

𝑔
cos (𝛼s𝑔𝑛 (𝜃) − 𝜃)

]
(2)

where 𝑝 =
√
𝑚𝑔𝑅∕𝐼0 is the frequency parameter of the block. I0 represents the moment of inertia of the rigid body with

respect to the pivot point(s), 𝑚 is the mass of the block, 𝑅 is the half-diagonal distance measured from the pivot point(s)
to the centre of mass, and 𝜃 is the rocking rotation. 𝑠𝑔𝑛(𝜃) is the sign function with respect to 𝜃.
During rocking, when 𝜃 = 0, impact happens, and energy is lost. The classic rocking theory1 considers impact an

instantaneous event during which no bouncing and sliding occur at the contact interface. Hence, the angular veloci-
ties before (𝜃̇−) and after impact (𝜃̇+) can be connected via the (dimensionless) coefficient of restitution 𝜃̇+ = 𝜂𝜃̇− 1 To
estimate η, Housner1 applied the conservation of the moment of momentum before and after impact, which yielded a
closed-form expression with respect to the geometrical characteristics of the block. However, later studies showed that
the amount of energy lost at impact is not solely a function of the block’s geometry42 but is also affected by the material of
the block and the properties of the contact interface. Thus, the value of the coefficient of restitution η is usually calibrated
from experiments43 or assumed.4 This study considers η an independent input variable and thoroughly investigates its
contribution to rocking response.

3 APPROPRIATE DEMAND PARAMETER AND INTENSITYMEASURES

For the purposes of the present study, the most appropriate engineering demand parameter that efficiently describes
the response of a rigid structure undergoing pure rocking motion (i.e., no sliding and bouncing) is the absolute peak
rocking rotation |𝜃|𝑚𝑎𝑥 normalised with the slenderness angle 𝛼. A rigid rocking block remains in full contact with the
ground if the ground acceleration does not exceed the minimum threshold of Equation (1). For such cases, the block
sustains non-rocking (NR) with |𝜃|𝑚𝑎𝑥∕𝛼 = 0. In case the ground acceleration exceeds theminimum threshold, the block
commences rockingmotion (|𝜃|𝑚𝑎𝑥∕𝛼 > 0). By the end of the ground excitation, the block either returns to its initial (rest)
position, having undergone safe rocking (SR) motion with a finite nonzero peak rotation (|𝜃|𝑚𝑎𝑥∕𝛼 ≠ 0), or overturns
(OT) with a theoretically infinite peak rotation (|𝜃|𝑚𝑎𝑥∕𝛼 → ∞). From a numerical perspective, overturning occurs when|𝜃|𝑚𝑎𝑥∕𝛼 ≥ 𝜋∕2.
In general, the response of a rigid rocking structure subjected to an earthquake ground excitation is a function of the

structural characteristics p, α, the independent coefficient of restitution η, and the parameters that characterise the wave-
form of a ground excitation. The selection of appropriate parameters, that is, intensity measures (IMs), that can efficiently
represent different attributes of a seismic waveform, such as frequency, amplitude, duration, and energy content, among
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4 BANIMAHD et al.

TABLE 1 List of dimensionless IMs adopted to represent different attributes of a seismic waveform.

Category IM Definition
Intensity-based 𝐼𝑀1 = 𝑃𝐺𝐴∕𝑔𝑡𝑎𝑛𝛼 𝑃𝐺𝐴 = max(|𝑢̈𝑔(𝑡)|)44

𝐼𝑀2 = 𝑆𝑃𝐴∕𝑔𝑡𝑎𝑛𝛼 SPA = sustained peak acceleration44

𝐼𝑀3 = 𝑝𝑃𝐺𝑉∕𝑔𝑡𝑎𝑛𝛼 𝑃𝐺𝑉 = max(|𝑢̇𝑔(𝑡)|)44
𝐼𝑀4 = 𝑝𝑆𝑃𝑉∕𝑔𝑡𝑎𝑛𝛼 SPV = sustained peak velocity44

𝐼𝑀5 = 𝑝2𝑃𝐺𝐷∕𝑔𝑡𝑎𝑛𝛼 𝑃𝐺𝐷 = max(|𝑢𝑔(𝑡) |44
𝐼𝑀6 = 𝑝𝑀𝐼𝑉∕𝑔𝑡𝑎𝑛𝛼 MIV =maximum incremental velocity

Frequency-based 𝐼𝑀7 = 𝑃𝐺𝐴∕𝑝𝑃𝐺𝑉

𝐼𝑀8 = 𝑃𝐺𝑉∕𝑝𝑃𝐺𝐷

𝐼𝑀9 = 𝑝𝑇𝑚 𝑇𝑚 =
∑
𝑖

(𝐶2
𝑖
∕𝑓𝑖 )∕

∑
𝑖

𝐶2
𝑖
=mean period45

𝐼𝑀10 = 𝜔𝐷∕𝑝 𝜔𝐷 = dominant frequency (maximum of Fourier amplitude spectrum)44

𝐼𝑀11 = 𝜔𝐶∕𝑝 𝜔𝐶 = central frequency44

𝐼𝑀12 = 1∕(𝑝
√
𝑡𝑢𝑛𝑖∕v0) v0 = 𝑁∕𝑡𝑏𝑟𝑐 = number of crossings per unit of (bracketed) time

Duration-based 𝐼𝑀13 = 𝑝𝑡𝑠𝑖𝑔 𝑡𝑠𝑖𝑔 = significant duration52

𝐼𝑀14 = 𝑝𝑡𝑢𝑛𝑖 𝑡𝑢𝑛𝑖 = uniform duration26

𝐼𝑀15 = 𝑝𝑡𝑏𝑟𝑐 𝑡𝑏𝑟𝑐 = bracketed duration53

𝐼𝑀16 = 𝑝𝑡𝐷 𝑡𝐷
54

𝐼𝑀17 = 𝑝𝑡𝑠𝑢𝑠𝑡 𝑡𝑠𝑢𝑠𝑡 = sustained duration

Energy-based 𝐼𝑀18 = 𝐴𝑅𝑀𝑆∕𝑔𝑡𝑎𝑛𝛼 𝐴𝑅𝑀𝑆 =

√
1

𝑡𝑡𝑜𝑡

𝑡𝑡𝑜𝑡

∫
0
(𝑢̈𝑔(𝑡))

2
𝑑𝑡 = root mean square acceleration44

𝐼𝑀19 = 𝑝𝑉𝑅𝑀𝑆∕𝑔𝑡𝑎𝑛𝛼 𝑉𝑅𝑀𝑆 =

√
1

𝑡𝑡𝑜𝑡

𝑡𝑡𝑜𝑡

∫
0
(𝑢̇𝑔(𝑡))

2
𝑑𝑡 = root mean square velocity44

𝐼𝑀20 = 𝑝2𝐷𝑅𝑀𝑆∕𝑔𝑡𝑎𝑛𝛼 𝐷𝑅𝑀𝑆 =

√
1

𝑡𝑡𝑜𝑡

𝑡𝑡𝑜𝑡

∫
0
(𝑢𝑔(𝑡))

2
𝑑𝑡 = root mean square displacement44

𝐼𝑀21 = 𝑝2𝐿𝑒∕𝑔𝑡𝑎𝑛𝛼 𝐿𝑒 = 𝑃𝐺𝐴 ⋅ 𝑇2𝑚 = energetic length46

𝐼𝑀22 = 𝑝𝐼𝐴∕𝑔𝑡𝑎𝑛𝛼 IA = Arias intensity47

𝐼𝑀23 = 𝑝1∕2𝐼𝐶∕(𝑔𝑡𝑎𝑛𝛼)
3∕2 IC = characteristic intensity49

𝐼𝑀24 = 𝑝5∕4𝐼𝐹∕𝑔𝑡𝑎𝑛𝛼 𝐼𝐹 = 𝑃𝐺𝑉 ⋅ 𝑡
1∕4

𝑠𝑖𝑔
= Fajfar index48

𝐼𝑀25 = 𝑝3𝑆𝐸𝐷∕(𝑔𝑡𝑎𝑛𝛼)
2 SED = specific energy density50

𝐼𝑀26 = 𝑝1∕3𝐼𝑅𝑎∕𝑔𝑡𝑎𝑛𝛼 𝐼𝑅𝑎 = 𝑃𝐺𝐴 ⋅ 𝑡
1∕3

𝑠𝑖𝑔
= Rindell acceleration51

𝐼𝑀27 = 𝑝𝐼𝑅v∕(𝑔𝑡𝑎𝑛𝛼)
2∕3

𝐼𝑅v = 𝑃𝐺𝑉2∕3 ⋅ 𝑡
1∕3

𝑠𝑖𝑔
= Rindell velocity51

𝐼𝑀28 = 𝑝7∕3𝐼𝑅𝑑∕𝑔𝑡𝑎𝑛𝛼 𝐼𝑅𝑑 = 𝑃𝐺𝐷 ⋅ 𝑡
1∕3

𝑠𝑖𝑔
= Rindell displacement51

others, is a challenging task. This study extends the work of Giouvanidis and Dimitrakopoulos26 and formulates dimen-
sionless IMs, which are both structure- and record-dependent. In Table 1, PGA, PGV, and PGD are the peak ground
acceleration, velocity, and displacement,44 respectively, while 𝑢̈𝑔(𝑡), 𝑢̇𝑔(𝑡), and 𝑢𝑔(𝑡) are the acceleration, velocity, and
displacement time histories of a ground motion. SPA and SPV are the sustained peak acceleration and velocity defined
as the third highest (in absolute value) acceleration and velocity peaks with a minimum duration of 20dt among them,
where dt denotes the time-step of the ground motion record.44 Tm is the mean period of the ground excitation,45 whereas
ωd, ωc represent the dominant and central frequency of the signal.44 ARMS, VRMS, and DRMS are the root mean square
acceleration, velocity, and displacement.44 Le is the energetic length scale.46 In addition, IA is the Arias intensity,47 IF is
the Fajfar index,48 and IC is the characteristic intensity.49 SED is the specific energy density,50 whereas IRa, IRv, and IRd
are the Riddell acceleration, velocity, and displacement intensity.51 Also, tsig is the significant duration52 (Figure 2E), tbrc
represents the bracketed duration53 (Figure 2A), and tuni is the uniform duration26 (Figure 2D). Due to the importance
of velocity metrics on rocking response, the sustained duration tsust is defined as the time interval between the first and
third peaks of the absolute ground velocity time history (Figure 2C). Zhou and Katayama54 introduced a duration-based
IM based on the characteristics of the power spectral density of the strong motion record44 denoted as tD.55 Giouvanidis
and Dimitrakopoulos,26 unveiled the substantial contribution of the individual impulses of exceedance |Δ𝑢̇𝑔|, that is, the
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BANIMAHD et al. 5

(A) (B)

(D)

(F)

(C)

(E)

F IGURE 2 Intensity measures of Table 1 using the Northridge-01 earthquake record (Newhall fire station).

F IGURE 3 The adopted multi-level approach. (NR=non-rocking; SR=safe rocking; OT=overturning).

enclosed (shaded) areas between the accelerogram and the rocking initiation threshold of Equation (1) (Figure 2B), on the
safe rocking response. The summation of those areas provides the cumulative absolute velocity of exceedance (CAVexc)26
(Figure 2F). Instead, this work exploits the contribution of these areas’ (i) amplitude and (ii) frequency on the response
through two novel IMs for the rocking literature (IM6 and IM12 in Table 1). Specifically, the maximum (absolute) area
between the accelerogram and two crossing points of the minimum ground acceleration threshold represents the max-
imum incremental velocity (MIV)56 (Figure 2B). To capture the distribution of the individual impulses of exceedance
throughout time, a frequency-based IM considers the number of crossings (N) per unit of time during which the ground
acceleration is capable of triggering rocking motion. Herein, only crossings within the bracketed duration are considered.

4 THE ADOPTEDMULTI-LEVEL APPROACH FOR THE ROCKING PROBLEM

Figure 3 illustrates the multi-level approach adopted to address the rocking problem using ANN. Level 1 consists of the
nonlinear dynamic analyses (NLDA) of rocking structures when subjected to a suite of recorded earthquakes, while the
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6 BANIMAHD et al.

F IGURE 4 (A) Total number of safe rocking (SR), overturning (OT) and non-rocking (NR) cases after nonlinear dynamic analyses, and
Mw–Rrup distribution with reference to the (B) safe rocking and (C) overturning cases.

other Levels are presented below. As stated, the seismic rocking response depends on the structural characteristics p, α,
the coefficient of restitution η, and the parameters that characterise the ground motion waveform. This work assumes
that both structural characteristics and the coefficient of restitution follow a uniform distribution. The frequency param-
eter of the blocks varies 0.7 ≤ p ≤ 4 rad/s, yielding a variety of rocking geometries with diagonal distance 0.92 ≤ 2R ≤

30 m. The slenderness angle of the blocks lies between 0.07 ≤ α ≤ 0.4 rad, covering a wide range of rocking configura-
tions with aspect ratios 2.3 ≤ h/b ≤ 15, capable of representing, for example, building/lab contents, masonry façades or
bridge columns. Importantly, this work investigates the contribution of the coefficient of restitution to rocking response.
As stated, η is an independent input variable with values 0.72 ≤ η ≤ 0.99 based on experimental results.57,58 Finally,
recorded earthquake ground motions from the PEER database59 are employed for the nonlinear dynamic analyses. Each
record consists of three components. The effect of the vertical component on pure rocking response is marginal60,61;
thus, it is neglected. In addition, due to some correlation between the two horizontal components, only one (randomly
selected) is used for the dynamic analyses. To induce higher levels of seismic demand, scale factors of 1, 1.5, and 2 are
assigned to the accelerograms.4,62 To preserve the kinematic features of the ground motions and avoid inducing bias
in the response, larger scale factors have not been considered.63,64 Subsequently, 59,640 response-history analyses are
conducted.
Figure 4A illustrates the total number of safe rocking (SR), overturning (OT) and non-rocking (NR) cases after conduct-

ing nonlinear dynamic analyses (Level 1 in Figure 3). The NR cases are dictated by Equation (1), which is deterministically
defined. Thus, in this study, this response mode is omitted. Subsequently, only the safe rocking (2710) and overturning
(484) cases are considered (Level 2), which serve as the input dataset for training the ANN models for the classification
and regression problems (Level 3). Figure 4B,C show how the safe rocking and overturning cases are distributed with
respect to the rupture distance (Rrup) and moment magnitude (Mw). Most earthquake records that induce high rocking
demands are characterised by Rrup <80 km andMw > 5.

5 DIMENSIONALITY REDUCTION AND SELECTION OF TAILORED INPUT
VARIABLES

Machine learning models may produce biased results if there are linear correlations (i.e., collinearity/multicollinearity)
between/among the explanatory input variables.65 One way to detect collinearity between two variables is through the
correlation matrix. In general, a Pearson correlation coefficient greater than 0.8–0.9 indicates collinearity.65 The presence
of collinearity can cause problems in the prediction since, for instance, when two IMs tend to increase or decrease simul-
taneously, it becomes difficult for the ML algorithm to quantify the amount each IM contributes to the response. In other
words, the importance of one predictormay be concealed due to the presence of collinearity. In addition,multicollinearity,
which is the existence of linear correlations among three or more input variables, may also be present. Similarly, multi-
collinearity may reduce the predictive power of a single input variable by the extent to which it is associated with other
variables.65 Hence, the use of simple correlation analysis is not sufficient to detect multicollinearity. Different method-
ologies have been proposed to identify multicollinearity, such as condition index,66 pairwise correlation coefficient67 and
variance inflation factor (VIF).68 This study adopts the VIFmethod to investigate potential multicollinearity. Specifically,
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BANIMAHD et al. 7

the VIF for each input variable is evaluated through linear regression analysis with the remaining input variables:

𝑉𝐼𝐹𝐼𝑀𝑖 =
1

1 − 𝑅2
𝐼𝑀𝑖

(3)

where 𝑅2
𝐼𝑀𝑖

is the square of the multiple correlation coefficient between 𝐼𝑀𝑖 and the remaining IMs. The minimum value
of VIF is 1 when 𝑅2

𝐼𝑀𝑖
= 0 and indicates a complete absence of multicollinearity. As the value of VIF increases, the level of

multicollinearity increases. In general, VIF values greater than 10 indicate the presence of multicollinearity.65,68,69 Com-
monways tominimise the impact ofmulticollinearity on the prediction are: (i) imposing a penalty for including additional
variables into the model and/or (ii) combining two or more input variables into a single index, especially when they
are conceptually similar.69,70 This study adopts the former method. This pre-processing analysis is implemented through
dimensionality reduction, namely by iteratively removing input variableswith correlation coefficient andVIF value higher
than the adopted thresholds.

6 ARTIFICIAL NEURAL NETWORK ARCHITECTURE

As essential tool in machine learning, ANN is a computational modelling tool utilised to learn and model real-world
complex problems for which conventional algorithms struggle. ANN is an established data processing algorithm used
to identify complex nonlinear relations between a set of input and output variables. It can be purely data-driven or gov-
erned by physical laws (i.e. physics-informed ANN). The key difference between them lies in the ability of the latter to
incorporate physical laws of dynamics into the learning process. Therefore, in principle, physics-informed ANN is able to
provide predictions tailored to the physical restrictions that govern the particular engineering problem. Investigating the
applicability of physics-informed ANN to the rocking problem merits further investigation, which is beyond the scope of
the present study.
Figure 5 illustrates the architecture of a typicalANNmodel,which is formedby (at least) three layers, namely input layer,

output layer, and hidden layer(s). The appropriate number of hidden layers is a challenging task. In general, the number
of hidden layers varies based on the complexity and nature of the problem and the necessity to capture the nonlinearity
between input and output variables. For most engineering problems, up to three hidden layers are considered adequate
for both regression and classification. Each layer consists of neurons, which are connected and interact with each other
via adjustable weights. The number of neurons in the input and output layers corresponds to the number of input and
output variables, respectively. On the other hand, the number of neurons in each hidden layer varies and depends on the
peculiarities of the problem. A model with too few neurons cannot properly identify and learn the underlying nonlinear
patterns in the dataset, while too many neurons may cause overfitting of the model.71,72
The most common ANN architecture is the multi-layer feed-forward network or multi-layer perceptron (MLP)

algorithm.73 In MLP algorithms, signals are transmitted in a forward direction (i.e., forward propagation) from the input
layer to the hidden layer(s) and then towards the output layer. To develop a numerical model exploiting a relation between
input and output variables, the signal entering the neurons in the hidden layer(s) is obtained by multiplying the input
signal (xj) with appropriate weighting factors (wkj). A bias (bk) is also added to shift the activation function by a constant
amount. The linear combination of the weighted inputs and bias is the net input (uk) for the activation function (Figure 5).

𝑢𝑘 =

𝑚∑
𝑗=1

w𝑘𝑗𝑥𝑗 + 𝑏𝑘 (4)

The activation function f(∙) identifies complex patterns in the dataset and introduces nonlinearities to the network. The
output value of the signal depends on the type of the activation function. Two basic types of activation functions are (i)
linear and (ii) nonlinear. For regression problems, a nonlinear function is usually adopted. Thus, using the hyperbolic
tangent sigmoid function, the output of each neuron f(u) becomes71:

𝑓 (𝑢) =
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
(5)
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8 BANIMAHD et al.

F IGURE 5 Architecture of a typical artificial neural network (ANN) and a neuron k.

For classification problems, a nonlinear activation function can also be used. This study adopts the softmax (or normalised
exponential) function74:

𝑓(𝑢)𝑖 =
𝑒𝑢𝑖∑𝑙

𝑗=1
𝑒𝑢𝑗

(6)

where f(u)i is the i-th value of the output vector of the classification model, and l is the number of classes. Once the signal
reaches the output layer, the assumed termination criterion is evaluated. The termination criterion for regression and
classification problems is the error between outputs and desired targets. Minimisation of this error serves as the objective
function of the problem. To solve such nonlinear least-squares problems within an iterative procedure, this paper adopts
the Levenberg–Marquardt (LM) algorithm.75,76 When minimisation of the objective function is achieved, the learning
process terminates, and the ANN model is evaluated against the test dataset. Otherwise, the output signals propagate
to the input layer to adjust the parameters of the model (i.e., weights and biases) using a backpropagation algorithm
(Figure 5). These parameters are progressively adjusted till the termination criterion is satisfied. The ultimate goal of the
training procedure is to define an optimal set of weights and biases that produces the most accurate output.
Two main challenges of machine learning algorithms, which may result in their poor performance, are (i) overfitting

and (ii) shortage of input data for training.71 When overfitting occurs, the model performs well on the training dataset.
However, its performance deteriorates on the test dataset. There are several solutions to overcome overfitting.77 This study
adopts the early stoppingmethod.78 In this context, the whole dataset is divided into training, validation, and test datasets.
The training dataset is utilised to optimise the parameters of the ANN model (i.e., weights and biases). The validation
dataset, which is isolated from the training dataset, is used during the training process to evaluate the performance of
the trained model. An indication of overfitting is when the error on the validation dataset starts increasing. The early
stopping method identifies when the error starts increasing and terminates the training process. When the performance
of the model is satisfactory on the training-validation dataset, the test dataset is used to evaluate the effectiveness of the
model. Appropriate division of the input data is of primary importance to ensure a well-trained and thus generalised
model. A generalised model is adequately robust to an unseen (new) dataset. To this aim, the entire dataset is partitioned
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BANIMAHD et al. 9

…
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…

(A)

(B)

F IGURE 6 Flowchart of the adopted algorithm for the (A) regression, and (B) classification problems.

into bins of equal size, determined by sorting the target values. The training-validation dataset, which is assumed to be
80% of the whole dataset, is randomly extracted from each bin (Figure 6A). This selection guarantees well-distributed
data, contributing to a more efficient training procedure. As a result, the ANN model is trained based on a wide range of
target values, which facilitates the generalisation of the model.
In caseswhere there is a shortage of input data, the risk of losing important information on the trends between input and

output variables becomes higher. As a result, the ANN model may become biased. To improve the stability of the model
and minimise issues arising due to the lack of sufficient input data, cross-validation, such as the k-fold cross-validation
approach, is employed.79 The procedure commences assuming that 20% of the whole dataset serves as the test dataset.
This part does not participate in the learning process. The remaining 80% is randomly divided into k groups of samples
such that k-1 subsets are used for training and the remaining one for validation (Figure 6A). In this study, k equals 10.79,80
Note that selecting the appropriate number of folds is an optimisation problem, which, however, is beyond the scope of the
present study. The procedure is repeated k times so that each subset has been used as a validation dataset. Subsequently,
k ANN regression models are trained based on the training-validation dataset and evaluated based on the test dataset.
A similar procedure is utilised for the classification problem (Figure 6B). The main difference between the regres-

sion and classification problem lies in that, for the regression problem, the overturning samples are omitted. On the
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10 BANIMAHD et al.
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F IGURE 7 Confusion matrix and corresponding metrics for evaluating a classification model.

contrary, predicting overturning is the main objective in the classification problem; thus, the overturning samples are
considered. Similarly, to construct the training-validation dataset, this work randomly selects 80% from each bin of the
safe rocking samples and 80% of the overturning samples. The remaining 20% of safe rocking and overturning samples are
considered as the test dataset. Again, the k-fold cross-validation approach is adopted to facilitate a more efficient training
process.

6.1 Evaluating the performance of an ANNmodel

6.1.1 Regression

The performance of theANNmodel is evaluated using different statistical indices. For regression problems, where the out-
put takes a continuous value, the performance of the model can be evaluated through the root mean square error (RMSE),
(Pearson) correlation coefficient (rP), coefficient of determination (R2), mean absolute error (MAE), and symmetric mean
absolute percentage error (sMAPE):

𝑅𝑀𝑆𝐸 =
√

1

𝑛

∑𝑛

𝑖=1 (𝑋𝑖 − 𝑌𝑖)
2
, 𝑟𝑃 =

∑𝑛
𝑖=1 (𝑋𝑖−𝑋̄)(𝑌𝑖−𝑌̄)√∑𝑛

𝑖=1 (𝑋𝑖−𝑋̄)
2
⋅
∑𝑛
𝑖=1 (𝑌𝑖−𝑌̄)

2
, 𝑅2 = 1 −

∑𝑛
𝑖=1 (𝑋𝑖−𝑌𝑖)

2∑𝑛
𝑖=1 (𝑋𝑖−𝑋̄)

2

𝑀𝐴𝐸 =
1

𝑛

∑𝑛

𝑖=1
|𝑋𝑖 − 𝑌𝑖|, 𝑠𝑀𝐴𝑃𝐸 =

1

𝑛

|𝑋𝑖−𝑌𝑖||𝑋𝑖|+|𝑌𝑖|
(7)

where n is the number of data points. Xi and Yi are the actual and predicted values, respectively, whereas 𝑋̄ and 𝑌̄ are the
mean of the actual and predicted values.

6.1.2 Classification

In classification problems, logistic regression as a supervised learning approach is a powerful tool for solving binary
problems.81 The output of the logistic regression algorithm is a continuous value varying between zero and unity. This
value can be converted into a firm class label using a pre-defined threshold where samples with outputs higher (or equiv-
alently lower) than the assumed threshold are categorised into a specified class. For binary classification problems, the
default andmost common threshold is 0.5. The performance of a classifier can be evaluated through the confusionmatrix.
Figure 7 illustrates a typical confusionmatrix for binary problems, where the safe rocking (SR) cases are the negative class
(Class 0) while the overturning (OT) cases are the positive class (Class 1). Four key values can be arranged in a confusion
matrix: True Positive (TP) indicates the number of positive (overturning) samples which are correctly classified, False
Positive (FP) represents the number of actual negative (safe rocking) samples which are falsely classified as positive (over-
turning), True Negative (TN) denotes the number of negative (safe rocking) samples which are correctly classified, and
False Negative (FN) is the number of actual positive (overturning) samples which are falsely classified as negative (safe
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F IGURE 8 Typical (A) Receiver Operating Characteristics (ROC) curve, and (B) Precision–Recall (PR) curve.

rocking). Along with the confusion matrix, metrics such as Accuracy, Recall or Sensitivity or True Positive Rate (TPR),
Precision, F1-score, and False Positive Rate (FPR) are also used to evaluate the performance of a classifier:

Accuracy =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
, Recall =

𝑇𝑃

𝑇𝑃+𝐹𝑁
, Precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃

F1−score = 2
Precision⋅Recall

Precision+Recall
, FPR =

𝐹𝑃

𝑇𝑁+𝐹𝑃

(8)

Accuracy is the ratio of all correctly predicted samples over the total number of samples. Precision identifies the proportion
of the positive samples that are correctly predicted, whereas Recall (or Sensitivity or TPR) is the fraction of the truly
predicted positive samples out of all actual positive samples. Among thosemetrics, Accuracymay bemisleading, especially
for an imbalanced dataset, that is, with a highly unequal distribution of classes in the training dataset—the number of
safe rocking versus overturning cases—since it does not provide information about the class of the predicted samples.
Classifying the minor (overturning) class in an imbalanced dataset is very important. Thus, Recall and Precision are more
effective metrics than Accuracy. However, when the importance of false positive cases is high, namely the actual safe
rocking cases that are falsely predicted as overturning, Precision is a valuable metric for evaluating the model. In this
study, high Precision means a low number of safe rocking cases classified as overturning. In contrast, Recall becomes
appropriate when the importance of false negative cases is high, herein the actual overturning cases falsely classified
as safe rocking. High Recall implies a low number of overturning cases classified as safe rocking. Therefore, in cases
where both Recall and Precision need to be considered, the F1-score becomes a more efficient metric. F1-score represents
the harmonic mean between Precision and Recall and, similarly, takes values between zero and unity. A higher F1-score
implies a better classifier with a balance between Precision and Recall.
A limitation of the evaluationmetrics of Equation (8) is their sensitivity to the assumed threshold value. Particularly for

imbalanced datasets, the threshold value might affect the prediction of the class of a sample. In lieu of predicting the class
of a sample, the probability of a sample belonging to each class can be employed as a metric for evaluating classification
models. Probabilistic measures, such as the Receiver Operator Characteristics (ROC) curve and the Precision–Recall (PR)
curve, enable the prediction of the sample class and provide the predicted probability of the event across various threshold
values, ranging from zero to unity. Specifically, ROC is the curve with the False Positive Rate (FPR) values on the abscissa
and the True Positive Rate (TPR) values on the ordinate, where each point on the ROC curve corresponds to a different
threshold value (Figure 8A). The Area Under Curve (AUC)81 is a single metric defined as the area under the ROC curve.
AUC ranges from zero to unity.WhenAUC= 1, the classifier perfectly distinguishes between all positive and negative class
points. On the contrary, when AUC = 0, the classifier predicts all negatives as positives and all positives as negatives. For
the special case of AUC = 0.5 (denoted with the red line in Figure 8A), the classifier is unable to distinguish between the
two classes, meaning that its predictions become random. Thus, in general, to get better class predictions, 0.5 < AUC < 1.
The higher the AUC, the better the classifier. Since AUC provides information for both classes, it can be safely used to
evaluate classification models even for imbalanced datasets. However, for severely imbalanced datasets with the negative
(safe rocking) class being the major, the positive (overturning) class as the minor has less effect on the ROC curve and,
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12 BANIMAHD et al.

subsequently, the AUC value. Therefore, a probabilistic curve that focuses on theminor class is amore appropriatemetric.
To this end, Precision–Recall (PR) is a curvewith the Precision values on the ordinate and theRecall values on the abscissa,
considering different probability thresholds (Figure 8B). Similarly, the area under the PR curve (PRAUC) is a metric used
to evaluate a classifier. A higher PRAUC value denotes a better classifier.

6.2 Identification of significant predictors (feature importance) – Sensitivity analysis

6.2.1 Regression

Various methods have been proposed to identify the most effective parameters (or significant predictors) within a neural
network approach. This study adopts four different approaches: the Garson method,82 the connection weight or Olden
method,83 the improved stepwise method,84 and the profile method.85

∙ Garson method

According to the Garson method, each connection weight between the hidden and output layers is partitioned into
components associated with each input neuron. The relative importance factor is82:

𝐼𝑖𝑘 =

𝐿∑
𝑗=1

(
w𝑖𝑗v𝑗𝑘∑𝑁

𝑟=1
w𝑟𝑗

)/
𝑁∑
𝑖=1

[
𝐿∑
𝑗=1

(
w𝑖𝑗v𝑗𝑘∑𝑁

𝑟=1
w𝑟𝑗

)]
(9)

where 𝐼𝑖𝑘 is the influence of the i-th input parameter on the k-th output.N and L are the number of neurons related to the
input and hidden layers, respectively. wij is the connection weight between the i-th input neuron and j-th hidden neuron,
while vjk is the connection weight between the j-th hidden neuron and k-th output neuron. A limitation of the Garson
method is that it uses solely the magnitude of the connection weights to calculate the importance factor.

∙ Connection weight or Olden method

Olden and Jackson83 introduced the connection weight or Olden method, in which both the magnitude and the direc-
tion (i.e. positive or negative) of the connection weights are considered to calculate the importance factor of each input
parameter to the output. The importance factor is the sum of the products of the connection weightswij between the input
and hidden layers with the connection weights vjk between the hidden and output layers:

𝐼𝑖𝑘 =

𝐿∑
𝑗=1

w𝑖𝑗v𝑗𝑘 (10)

∙ Improved stepwise method

In the classical stepwise method, the effect of the step-by-step adding and/or withdrawing input parameters on the
output is quantified by the mean square error (MSE) between the output and the target. However, such amethod requires
a newANNmodel for each step that needs training. In contrast, the improved stepwise method utilises only a single ANN
model.84 In this approach, each input parameter is sequentially fixed at its mean value to investigate potential deviations
of the MSE. The resulting MSE estimates the relative importance of each input parameter on the target, with the most
important parameter having the largestMSE value.

∙ Profile method

Contrary to the improved stepwise method, the profile approach85 keeps the examined input parameter unchanged
while all remaining parameters are simultaneously fixed at their minimum, first quartile, median, third quartile, and
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BANIMAHD et al. 13

F IGURE 9 VIF analysis on the examined intensity measures of Table 1 for the classification problem after removing linear dependency.

maximum values, successively. Therefore, for each input parameter, five new datasets are created. For each dataset, the
ANN model predicts the outputs. The variation of the predicted outputs for each input parameter reveals its impor-
tance. Specifically, the larger the variation of the output, the higher the impact of the examined input parameter on the
output.

6.2.2 Classification

To identify the most effective parameters (or significant predictors) in classification problems, the Garson, Olden, and
profile methods cannot be used since they are developed based on continuous output values. Therefore, this study utilises
the improved stepwise method, which can also be used for discrete output values.

7 CLASSIFYING ROCKING RESPONSEWITH THE USE OF ANN – SAFE ROCKING
VERSUS OVERTURNING AND THE ROLE OF THE COEFFICIENT OF RESTITUTION

This section generates an ANNmodel to classify rocking response to either (i) safe rocking, where the adopted structures
undergo rocking motion without any danger of overturning, or (ii) overturning, based on characteristics of the seismic
signal, structural parameters, and the coefficient of restitution.

7.1 Dimensionality reduction for the classification of rocking response

Prior to training the ANN model, tailored input variables need to be selected from Table 1. To avoid collinear-
ity/multicollinearity, reduce the dimensionality of the problem, and enhance the reliability of the ANNmodel, this section
conducts correlation and VIF analyses, the results of which are omitted herein for brevity. Figure 9 shows the (linearly)
independent input variables to serve as input dataset for the classification problem. Note that the coefficient of restitution
η, despite not being considered in the correlation and VIF analyses due to its status as an independent input variable, is
still considered during the training process of the ANN model.

7.2 An ANNmodel to classify rocking response and identify the most significant
predictors

There is no easy method to define the most optimal parameters to describe a neural network, for instance, the num-
ber of hidden layers and neurons for each hidden layer. This subject is an optimisation problem, which is beyond the
scope of the present study. However, ‘trial and error’ is an efficient and simple method to define reasonable values for
the parameters of an ANN model. The ANN model includes three layers: (i) an input layer, which consists of 12 neurons
(one for each input variable of Figure 9 and the coefficient of restitution), (ii) a hidden layer of 15 neurons, and (iii) an
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14 BANIMAHD et al.
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F IGURE 10 Optimal number of neurons in the hidden layer for the classification problem.
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F IGURE 11 Confusion matrix and related metrics of the classifier based on the input variables of Figure 9 and the coefficient of
restitution.

output layer of a single neuron, which represents the binary outcome of the classification problem, that is, safe rocking
or overturning. Figure 10 illustrates the optimal number of neurons in the hidden layer, based on which the F1-score
becomes maximum. Furthermore, this study considers one hidden layer.86,87 The connection weights and biases in the
hidden layer are adjusted by the Levenberg–Marquart (LM) backpropagation algorithm, while the activation function is
assumed to follow a Softmax function. In the output layer, a linear activation function is utilised to scale the output of
the model to the desired values. Finally, the maximum epoch is 1000 based on ‘trial and error’, which is sufficient for this
study.
The input dataset used for the classification problem consists of 2710 safe rocking and 484 overturning samples

(Figure 4). 80% of all samples (i.e., 2560) serves as the training-validation dataset, and the remaining 20% (i.e., 634)
is considered for the test process. Figure 11 evaluates the generated ANN classification model on the test dataset
through a confusion matrix using the metrics of Section 6.1.2. The diagonal entries of the confusion matrix denote
the classes that are correctly classified, and the off-diagonal entries represent the misclassified classes. Specifically,
the model correctly classifies 529 out of 538 (actual) safe rocking cases (i.e., 98.3%) and 76 out of 96 (actual) over-
turning cases (i.e., 79.2%). The classification model shows a prediction accuracy of 95.5 % (i.e., 605 out of 634
cases are correctly classified). In addition, Figure 11 shows that even though Recall indicates an ordinary level of
the model’s performance (i.e., 79.2%), AUC, PRAUC, and F1-score show an excellent prediction ability of the clas-
sifier, 97.9%, 90.8%, and 84%, respectively. Recall that probabilistic metrics, such as AUC and PRAUC, represent
more reliable metrics for classifiers and, thus, illustrate more efficiently the reliability of the trained classification
model in predicting the binary response (safe rocking or overturning) of a rocking block when subjected to recorded
earthquakes.
To identify the significant predictors that contribute the most to the binary outcome of the classification problem,

this study adopts the improved stepwise method, based on which the input parameters are ranked according to their
influence on the output.84,86 To this aim, the AUC, PRAUC and F1-score metrics serve as objective functions. The lower
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F IGURE 1 2 Significant predictors that contribute the most to the classification of rocking response (safe rocking or overturning) based
on the (A) AUC, (B) PRAUC, and (C) F1-score.
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F IGURE 13 Confusion matrix and related evaluation metrics of the classifier based on the two most significant predictors of Figure 12
(i.e., 𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎) and 𝑝𝑇𝑚).

the AUC, PRAUC, and F1-score, the more effective the parameter. Figure 12 ranks the contribution of each input variable
to the output of the classification problem. Figure 12 shows that the distinction between safe rocking and overturning
is mainly dictated by the velocity characteristics of the seismic signal, herein PGV. Furthermore, Figure 12 shows that
frequency characteristics, such as Tm, are also critical to the outcome of the classification problem. In addition, both
velocity (PGV) and frequency (Tm) characteristics show consistency regardless of the adopted objective function, that
is, AUC (Figure 12A), PRAUC (Figure 12B), and F1-score (Figure 12C). Interestingly, the coefficient of restitution η and
the peak ground acceleration PGA are also important to the classification problem. This is based on the realisation that
the coefficient of restitution η controls the amount of energy dissipated at each impact, and the intensity-based PGA
dominates the response of stockier blocks since those blocks require higher levels of ground acceleration to initiate
rocking, which, soon after, cause overturning.
Based on the outcomes of Figure 12, Figure 13 evaluates a classification model that is trained using the two most impor-

tant and consistent input variables, that is, 𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎) and 𝑝𝑇𝑚, via a confusion matrix. As expected, Figure 13
shows that the classification model is less accurate (on average 93%) compared to the model of Figure 11, where all
parameters are considered (95.5%). However, the difference is marginal. Thus, the classification model based on the
two most important parameters of Figure 12 is accurate and reliable enough considering the uncertainties that char-
acterise an ANN model (e.g., number of hidden layers and neurons per hidden layer, training function, number of
samples, etc.). In general, Figures 12 and 13 reveal that a vector-valued IM consists of 𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎) and 𝑝𝑇𝑚 shows
high contribution to the binary outcome of the classification problem. Thus, it could be adopted as an optimal vector-
valued 𝐼𝑀𝑂𝑇 = [𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎), 𝑝𝑇𝑚] to predict the probability of overturning of rocking structures when subjected
to recorded earthquakes. However, this topic merits further investigation, which is beyond the scope of the present
study.
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16 BANIMAHD et al.

F IGURE 14 VIF analysis on the examined intensity measures of Table 1 for the regression problem after removing linear dependency.

8 PREDICTION OF ROCKING AMPLITUDEWITH THEUSE OF ANNAND THE ROLE
OF THE COEFFICIENT OF RESTITUTION

This section focuses on the safe rocking cases, where the adopted structures survive the applied groundmotions and return
to their initial (rest) position. The aim of this section is twofold. Firstly, it generates an ANNmodel to predict the rocking
amplitude. Secondly, it reveals the contribution of each input variable to the rocking amplitude with special emphasis on
the coefficient of restitution.

8.1 Dimensionality reduction for the prediction of rocking amplitude

Similarly, the identification and elimination of collinearity/multicollinearity is a crucial step prior to the training of
the ANN model. This section conducts correlation and VIF analyses to detect and minimise the effect of collinear-
ity/multicollinearity on the prediction. For brevity, those results are omitted. Figure 14 presents the adopted (linearly)
independent variables to serve as input for training the ANN model. Again, as an already independent parameter, the
coefficient of restitution is not considered in the correlation andVIF analyses. However, it is still considered in the training
process of the ANN model.

8.2 An ANNmodel to predict rocking amplitude and identify the most significant
predictors

TheANNmodel for the regression problem consists of three parts: (i) an input layer, (ii) a number of hidden layers and (iii)
an output layer. A ‘trial and error’ procedure is utilised to identify the most optimal number of hidden layers and neurons
in each hidden layer. Figure 15A shows that a single hidden layer is adequate to train the ANN model efficiently.88,89 In
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F IGURE 15 Optimal number of (A) hidden layers and (B) neurons in each hidden layer for the regression problem.
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F IGURE 16 (A) Actual targets versus predicted outputs, and (B) distribution of the prediction error.

addition, Figure 15B shows that the hidden layer with 13 neurons in which the tangent hyperbolic activation function
transforms the input signal into the output provides the optimal solution. The input layer consists of 14 neurons (i.e., one
for each input variable of Figure 14 and the coefficient of restitution). A linear activation function is used in the output
layer. Again, a maximum epoch of 1000 is sufficient for this study.
Figure 16A plots the actual target with respect to the corresponding predicted output. In addition, Figure 16A presents

the linear trendline and emphasises the difference between the current prediction (dashed blue line) and the perfect one
(solid red line). The predicted outputs present a Pearson correlation coefficient as high as rP = 0.884 and a coefficient of
determination R2 = 0.776, illustrating the sufficient predictive ability of the ANN model. Observe in Figure 16A that for
close to zero actual targets, the ANN model predicts some negative outputs, which have no physical meaning. Neverthe-
less, the ANNmodel accurately predicts the peak safe rocking response, considering that both targets and outputs are on a
natural scale where a certain level of scatter is expected. Finally, Figure 16B highlights the distribution of prediction error
values based on the test dataset. It shows that the mean value of the prediction error is close to zero (μ = −0.011) with
a standard deviation of σ = 0.087. Based on the observed characteristics of the residuals, the error conforms to a normal
distribution. This normality of errors implies that the model is unbiased, and the errors are random, indicating that the
ANN model is a reliable and valid predictor of the rocking amplitude.
To reveal the contribution of each input variable (i.e., the IMs of Figure 14 and the coefficient of restitution η) to

the rocking amplitude, this section adopts the trained ANN model to rank them from the most to the least important
through the Garson, Olden, Stepwise, and Profile methods. Figure 17 shows that each method provides a slightly different
ranking. This is due to the different processes each approach follows to quantify the contribution of each input variable
(Section 6.2.1). Nevertheless, the different methods show an adequate level of consistency. Specifically, Figure 17 unveils
that rocking amplitude is governed by a combination of the frequency-based 𝑝𝑇𝑚, the duration-based 𝑝𝑡𝑢𝑛𝑖 , and the
intensity-based 𝑝𝑀𝐼𝑉∕(𝑔𝑡𝑎𝑛𝑎) as well as 𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎) regardless of the adopted approach. Note that the frequency of
appearance of the individual impulses of exceedance |Δ𝑢̇𝑔| captured by 1∕(𝑝√𝑡𝑢𝑛𝑖∕v0), the intensity-based 𝑃𝐺𝐴∕(𝑔𝑡𝑎𝑛𝑎),
and the frequency-based 𝑃𝐺𝐴∕(𝑝𝑃𝐺𝑉) play a considerable, yet not dominant, role. On the contrary, the contribution of
the coefficient of restitution η on rocking amplitude is inconsistent. In general, η has a marginal effect on the rocking
amplitude. Interestingly, Figure 17 unveils the consistent significance of a novel IM for the rocking literature, the intensity-
based 𝑝𝑀𝐼𝑉∕(𝑔𝑡𝑎𝑛𝑎), which represents the maximum impulse of exceedance |Δ𝑢̇𝑔|, that is, the maximum enclosed area
between the accelerogram and the rocking initiation threshold (Figure 2). Further corroboration of those results comes
from a sensitivity analysis. The analysis shows that solely the contribution of the top input variables (denoted with shaded
bars in Figure 17) remains consistent and thus reliable. Finally, note that the Olden method also reveals the sign of con-
tribution, implying that when all input variables are considered, for instance, the frequency-based 𝑃𝐺𝑉∕(𝑝𝑃𝐺𝐷), due to
its interaction with the remaining variables, does not simultaneously increase with the rocking amplitude.
Table 2 compares the predictive ability of the ANN model when it considers all input variables (of Figure 14 and the

coefficient of restitution) versus solely the most significant ones from Figure 17 using, respectively, the Garson, Olden,
Stepwise, and Profile methods. As expected, the performance of the ANN model deteriorates when fewer input variables
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F IGURE 17 Significant predictors that contribute the most to the rocking amplitude based on the (A) Garson, (B) Olden, (C) Stepwise,
and (D) Profile methods.

are considered. Specifically, when the four most significant predictors of Figure 17 are considered, the prediction accuracy
of the rocking amplitude is characterised by R2 = 0.726, a marginal decrease from R2 = 0.776 when all input variables are
considered. Thus, the four most important input variables can be potentially adopted to reduce the dimensionality and
simplify the rocking problem. By further decreasing the number of input variables, the prediction accuracy of the ANN
model remains sufficiently high. Table 2 shows that the difference a single parameter can make does not considerably
affect the prediction accuracy. However, this is not the case when solely the most significant parameter is considered.
Table 2 reveals that the ANN model fails to efficiently predict the rocking amplitude when trained with only the most
significant predictor of Figure 17. An exception is the uniform duration (𝑝𝑡𝑢𝑛𝑖), based on which the ANN model shows a
moderate predictive ability (R2 = 0.45). This highlights the importance of the uniform duration as an efficient scalar IM,26
especially if one considers that the input variables are on a natural (and not a logarithmic) scale, where a certain level of
scatter is expected.
From a practical/engineering viewpoint, using ANNmight be challenging as it contains the definition of many param-

eters, for example, number of hidden layers and neurons per hidden layer, training function, number of samples, among
others. To facilitate a rapid estimation of the rocking amplitude, a simple model expresses a relation between seismic
demand, represented by the absolute peak safe rocking response y, and a set of explanatory parameters, represented by
the most significant predictors X = {xi, xj, . . . xn} (Figure 17).

𝑦 = 𝐠𝐓 ⋅ 𝑓 (𝐗) + 𝜀 (11)

where gT = {a, b, c, d, . . . }T is the vector of the unknown constant (regression) coefficients, while ε refers to the error
term. The function f(∙) determines the type of regression (i.e., linear or nonlinear).90 When the error ε follows a normal
distribution with zero mean, the product 𝐠𝑇 ⋅ 𝑓(𝐗) represents the mean value of the predicted response 𝑦̄.91
The most well-known and widely used seismic demand model is a single-parameter regression model that estimates

the seismic demand as a function of a ground motion IM.92 However, the classic regression technique may not accurately
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BANIMAHD et al. 19

TABLE 2 Predictive ability of the ANN model using either all input variables or the most significant ones based on the Garson, Olden,
Stepwise, and Profile methods.

Metric
All input
variables Four most significant parameters (Figure 17) Three most significant parameters (Figure 17)

Garson Olden Stepwise Profile Garson Olden Stepwise Profile
rP 0.884 0.853 0.836 0.853 0.853 0.834 0.834 0.803 0.803
R2 0.776 0.726 0.696 0.726 0.726 0.694 0.694 0.642 0.642
RMSE 0.095 0.106 0.111 0.106 0.106 0.111 0.111 0.118 0.118
sMAPE 0.452 0.456 0.45 0.456 0.456 0.482 0.482 0.455 0.455
MAE 0.057 0.062 0.062 0.062 0.062 0.061 0.061 0.065 0.065

Twomost significant parameters (Figure 17) Most significant parameter (Figure 17)
Metric Garson Olden Stepwise Profile Garson Olden Stepwise Profile
rP 0.815 0.761 0.815 0.815 0.418 0.73 0.418 0.418
R2 0.662 0.574 0.662 0.662 0.172 0.453 0.172 0.172
RMSE 0.116 0.13 0.116 0.116 0.181 0.136 0.181 0.181
sMAPE 0.472 0.482 0.472 0.472 0.546 0.48 0.546 0.546
MAE 0.068 0.076 0.068 0.068 0.122 0.081 0.122 0.122

capture a more complex nonlinear relation between input and output variables.90,93 Thus, alternative formats have been
investigated to enhance the prediction ability of the regression model. Pan et al.94 found nonlinear and multivariate
regression models more efficient than conventional linear regression models in predicting the response of multi-span
highway bridges. Soleimani and Liu34 compared variations of a polynomial nonlinear regression model with the classic
linear regression model and revealed the superiority of the former in predicting the response of bridge components.
Ghosh et al.95 and Seo and Park96 adopted a 2nd-order polynomial model to estimate the fragility of bridges. Finally,
Sichani et al.97 also adopted a 2nd-order polynomial model to predict the maximum rocking angle of dry casks under
seismic loads. Consequently, this section investigates the ability of 1st- and 2nd-order polynomial regression models to
predict the rocking amplitude of rigid rocking blocks when subjected to earthquake ground motions.

𝑦̄ = 𝑎 +

𝑛∑
𝑖=1

𝑏𝑖𝑥𝑖 +

𝑛∑
𝑖=1

𝑐𝑖𝑥
2
𝑖
+

𝑛∑
𝑖=1

𝑛∑
𝑗=2,𝑗>𝑖

𝑑𝑖𝑗𝑥𝑖𝑥𝑗 (12)

where n corresponds to the number of explanatory parameters represented by the most influential input variables that
contribute to the rocking amplitude.
The best combination of the most influential input variables is investigated using the stepwise regression approach.98

Stepwise regression is an iterative method that involves adding variables (forward selection), removing variables
(backward elimination), or a combination of both (bidirectional elimination) from a nonlinear regression model
based on their contribution to the model’s fit. This study employs the stepwise method with a bidirectional elim-
ination. Considering the four most influential and most consistent input variables of Figure 17 (i.e., 𝐼𝑀𝑆𝑅 =

[𝑝𝑇𝑚, 𝑝𝑡𝑢𝑛𝑖, 𝑝𝑀𝐼𝑉∕(𝑔𝑡𝑎𝑛𝑎), 𝑝𝑃𝐺𝑉∕(𝑔𝑡𝑎𝑛𝑎)]), Equation (13) provides an estimation of the seismic demand (after con-
ducting nonlinear regression analysis on the test data characterised by R2 = 0.58) using a 1st-order polynomial model:

||𝜃̄||max
𝛼

= −0.032 + 0.114

(
𝑝𝑃𝐺𝑉

𝑔 tan 𝛼

)
+ 0.359

(
𝑝𝑀𝐼𝑉

𝑔 tan 𝛼

)
+ 0.005 (𝑝𝑡𝑢𝑛𝑖) (13)

and Equation (14) provides an estimation of the seismic demand (with R2 = 0.7) using a 2nd-order polynomial model:|𝜃̄|max
𝛼

= −0.047 + 0.312
(
𝑝𝑃𝐺𝑉

𝑔 tan𝛼

)
+ 0.201

(
𝑝𝑀𝐼𝑉

𝑔 tan𝛼

)
+ 0.003 (𝑝𝑇𝑚) − 0.013 (𝑝𝑡𝑢𝑛𝑖)

−0.076
(
𝑝𝑃𝐺𝑉

𝑔 tan 𝛼

)(
𝑝𝑀𝐼𝑉

𝑔 tan 𝛼

)
− 0.143

(
𝑝𝑃𝐺𝑉

𝑔 tan 𝛼

)
(𝑝𝑇𝑚) + 0.023

(
𝑝𝑃𝐺𝑉

𝑔 tan𝛼

)
(𝑝𝑡𝑢𝑛𝑖)

+0.139
(
𝑝𝑀𝐼𝑉

𝑔 tan 𝛼

)
(𝑝𝑇𝑚) − 0.032

(
𝑝𝑀𝐼𝑉

𝑔 tan𝛼

)
(𝑝𝑡𝑢𝑛𝑖) + 0.044 (𝑝𝑇𝑚) (𝑝𝑡𝑢𝑛𝑖)

(14)

The higher the order of the polynomial, the higher the prediction accuracy at the cost, though, of a more complex model.
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20 BANIMAHD et al.

(A) (B)

F IGURE 18 Actual vs predicted (via the seismic demand models of Equations (13) and (14)) rocking amplitude of a block with (A)
p = 1 rad/s, α = 0.1 rad, (B) p = 2.5 rad/s, α = 0.2 rad, and coefficient of restitution η = 0.92.

Figure 18 illustrates the accuracy of the proposed seismic demand models of Equations (13) and (14) in predicting the
rocking amplitude of two different blocks with (i) p = 1 rad/s, α = 0.1 rad (Figure 18A) and (ii) p = 2.5 rad/s, α = 0.2 rad
(Figure 18B) when the coefficient of restitution is η = 0.92. The adopted structural configurations can represent different
sizes and slenderness of real-life rocking structures. The structure of Figure 18A has a height of 14.6 m and a base of
1.47 m (aspect ratio of 10), representing, for example, a rocking bridge column or a masonry wall/façade. The structure of
Figure 18B has a height of 2.3 m and a base of 0.47 m (aspect ratio of 4.9), representing, for example, a lab or household
equipment or a museum object. Importantly, for the purposes of Figure 18, a suite of unseen (new) strong groundmotions
is utilised.99 The selected recorded earthquakes are characterised by moment magnitude Mw > 6 and rapture distance
Rrup < 25 km. In total, 375 nonlinear dynamic analyses are conducted, which lead to 305 safe rocking cases for the rocking
structure of Figure 18A, and 166 safe rocking cases for the stockier rocking structure of Figure 18B. The actual rocking
amplitude is plotted in the abscissa of Figure 18, while the ordinate represents the predicted amplitudes via Equations (13)
and (14). Figure 18 illustrates the acceptable prediction accuracy of the proposed seismic demandmodels for both structural
configurations. In addition, it shows that both demandmodels underestimate the prediction of higher rocking amplitudes
(|𝜃|𝑚𝑎𝑥∕𝛼 > 0.5), while they accurately predict lower rocking amplitudes (|𝜃|𝑚𝑎𝑥∕𝛼 < 0.5). Nevertheless, the proposed
seismic demand models show adequate prediction accuracy, which implies that they can serve as alternative and easy-
to-use demand estimates of various rocking blocks when subjected to recorded earthquakes. This outcome becomes even
more important if one considers that Equations (13) and (14) are formulated on a natural (and not a logarithmic) scale and
tested under new (unseen) recorded earthquakes.

9 CONCLUSIONS

This paper investigates the ability of ANN to treat the rocking problem. Specifically, it focuses on predicting the response
of rigid rocking blocks of different sizes and slenderness when subjected to recorded earthquakes. Two responsemodes are
considered: the block either overturns or safely returns to its initial (rest) position after the end of the ground excitation.
In this context, an ANN classifier is trained to accurately categorise rocking response into safe rocking or overturning
based on the structural parameters, groundmotion characteristics, and the coefficient of restitution. It further investigates
the role of each input variable in the overturning mode, revealing the substantial contribution of velocity and frequency
characteristics of the ground excitation, while the role of the coefficient of restitution is also important to the outcome
of the classification problem. In addition, an ANN predictor is trained to predict the safe rocking amplitude and identify
the most critical input variables. The results unveil that a combined consideration of duration, frequency, and intensity
characteristics of the groundmotion consistently shows a substantial contribution to the rocking amplitude. Among those,
this paper identifies a novel ground motion characteristic for the rocking literature, that is, the maximum incremental
velocity that shows a substantial correlation with the response, while the role of the coefficient of restitution becomes
less important to the outcome of the regression problem. Finally, even though the formulated ANN models accurately
predict the seismic response of rocking blocks, encompassing both overturning and safe rocking scenarios, there is an
inherent complexity stemming from the various parameters that can influence the predictive ability of an ANN model,
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for instance, number of hidden layers and neurons per hidden layer, training function, number of samples, among others.
Acknowledging the associated challenges the use of ANN may bring to engineering practitioners, this study proposes
closed-form expressions combining the most influential input variables for a rapid, yet adequately accurate, estimation of
the rocking amplitude.
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