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A B S T R A C T

This paper presents a probabilistic seismic demand model (PSDM) as a relationship between intensity measures 
(IMs) and engineering demand parameters (EDPs) for the seismic assessment of two case studies resembling 
historical masonry buildings. The first one is representative of stiff monumental buildings, and the second of tall 
and slender masonry buildings. Both structures are modelled in the OpenSees software using three-dimensional 
macroelements that consider both the in-plane and out-of-plane response of masonry walls. A set of 100 
accelerograms are selected to represent the seismic excitation. After full characterization of the seismic input in 
terms of IMs, both buildings are subjected to the action of these accelerograms to study the maximum structural 
response in the context of cloud analysis. The most suitable IMs are determined subsequently under the notions 
of efficiency, practicability, proficiency, and sufficiency. In addition, a composed measure is proposed as a linear 
combination in logarithmic space of the IMs that exhibit the best coefficient of determination (R2) within the EDP 
vs. IM regression. This optimal composed measure is determined through machine learning-based Lasso 
regression. In the final stage of the study, fragility curves are derived to measure the likelihood of exceedance of 
certain levels of average roof displacement in terms of IM parameters.

1. Introduction

Performance-based earthquake engineering (PBEE) is the modern 
approach to seismic resistant design whose main outcome is the pre
diction of the performance of structures at different levels of damage 
state (DS) [1,2]. In this regard, PBEE seeks to determine fragility curves 
as the conditional probability of a structural system exceeding a DS, 
defined by a specific level of engineering demand parameter (EDP), at a 
given value of an intensity measure (IM) metric [3]. Applications of 
PBEE can be easily found, specifically oriented to reinforced concrete 
and steel frame building construction systems [4–6] or bridge structures 
[7,8]. Nevertheless, literature on PBEE of masonry structures is still 
limited, either for residential buildings or historical constructions as 
well as monuments.

Limitations in the available literature can be mainly attributed to two 
major factors. The first one is given by the extensive computational 
demand in large-scale modelling of masonry buildings [9,10], and the 
second is by the inherent uncertainties that make the realistic 

representation of masonry buildings a cumbersome task [11–14]. 
Despite this, remarkable efforts have been made to establish guidelines 
for seismic performance-based assessment of masonry structures [15]. 
Park et al. [16] proposed a structural modelling methodology to perform 
fragility analysis with an acceptable level of accuracy and without a 
significant increase in computational time. It was pointed out that the 
out-of-plane (OOP) stiffness of walls should be explicitly considered in 
the risk assessment of unreinforced masonry (URM) buildings. This is 
generally not done for the design or verification of new unreinforced and 
reinforced masonry buildings, as it is implicitly accounted for through 
simplified analysis methods [17–20]. Structural performance and 
fragility of heritage buildings was addressed using simplified models of 
masonry structures [21–24]. Battaglia et al. [25] considered the vari
ability of structural and geometrical parameters in the seismic fragility 
assessment of masonry building aggregates, employing non-linear static 
analyses. A similar approach was adopted by Angiolilli et al. [26]. The 
seismic vulnerability of the masonry aggregate was assessed through 
nonlinear dynamic analysis and multiple stripe analysis. It was observed 
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that the damage limit state was mainly governed by the in-plane (IP) 
behaviour, while the collapse state by OOP mechanisms. On a similar 
context, a recent study by Tomić and Beyer [27] examined the predic
tion and postdiction of a shake-table test on a half-scale stone masonry 
aggregate tested by incremental bidirectional excitation. It was stressed 
out that simplified modelling of masonry aggregates can produce only 
seemingly satisfactory or conservative results. On top of that, Xu et al. 
[28] proposed a seismic-damage prediction method using 
machine-learning algorithms and a large catalogue of IMs (48 in total). 
The authors determined that, because of their complex dynamic fea
tures, URM buildings might require up to 13 IMs to achieve an accuracy 
level in the prediction higher than 90 %, in contrast with single-storey 
moment frames that require only one IM.

In a similar way, it is also worth mentioning some important works 
recently carried out and coordinated by the Italian Civil Protection 
Department (ICPD) on the definition of the seismic fragility of the Italian 
masonry building heritage. Rosti et al. [29] provided typological 
fragility curves, and fragility curves for vulnerability classes for resi
dential unreinforced masonry buildings based on an empirical model 
calibrated on Italian post-earthquake damage data and compatible with 
the key features of the Italian national seismic risk platform [30]. 
Lagomarsino et al. [31] presented a heuristic macroseismic vulnerability 
model for unreinforced masonry existing buildings calibrated on the 
observed damage in Italy, as an extension of the original proposal of 
Lagomarsino and Giovinazzi in [32]. Porto et al. [33] validated the 
fragility models adopted by the ICDP for the assessment of national 
seismic risk by comparing predicted and observed damage scenarios and 
consequences on building stock (mainly residential masonry and rein
forced concrete) and the population of the L’Aquila 2009 and Amatrice 
2016 seismic events. Then, mechanics-based fragility curves were 
developed for Italian unreinforced masonry residential buildings [34] 
and schools [35] by classifying the structures according to a few pa
rameters such as construction age, number of stories, plan area, and type 
of masonry (i.e. with regular or irregular pattern). More recently, Monti 
et al. [36] generated risk maps for Italy based on spectrum-consistent 
ag-based fragility that can be used at multiple locations and soils, pre
serving consistency is terms of spectral ordinates.

In recent years, probabilistic seismic demand analysis (PSDA) has 
become an important element of seismic fragility and risk analysis in the 
context of PBEE [37]. The main outcome of PSDA is better known as a 
probabilistic seismic demand model (PSDM), which denotes the prob
abilistic relationship between earthquake intensity and seismic demand. 
Such models are generally assumed to follow a power-law function 
within the median seismic demand vs. IM regression (ηEDP|IM), as stated 
by Cornell et al. [38]: 

ηEDP|IM = a IM b (1) 

with a and b as regression coefficients.
Nonetheless, other models, such as neural networks [39,40] or ma

chine learning [41], can also study the relation between EDP and IMs. 
Early studies developed PSDMs for building structures [42,43], bridges 
[44,45], or concrete dams [46]. The seismic risk of alternative structural 
typologies has been approached using similar frameworks. For example, 
transmission tower-line systems subjected to mainshock-aftershock se
quences [47,48]; steel diagrid systems [49]; nuclear power plants [50]; 
pile group-supported bridges [51]; open-pit slopes [52]; concrete face 
rockfill dams [53]; highway bridges [50]; electrical substations ac
counting for multi-stage uncertainties [54]; and more recently 
geo-structures using stochastic ground motion simulations [55]. In a 
similar context, Zhang et al. [56] addressed the reliability and failure 
probabilities of RC frame structures under progressive collapse due to 
different column-loss scenarios accounting for masonry infills through 
appropriate macro models. Zhou et al. [57] investigated the seismic risk 
of corroded RC frames with additional considerations of aftershock se
quences leading to risk estimation 10 times higher than mainshock 

damage. The work by Vargas-Alzate et al. [58] identified high-efficiency 
IMs to predict the seismic response of building classes affected by near- 
and far-fault ground motion records. Furthermore, Guo et al. [59] pro
posed a general procedure to identify the optimal IMs, specifically for 
long span cable-stayed bridges, based on generalized linear regression 
models.

The objective of this study is twofold: 

1. To develop PSDMs of two case study historical masonry buildings for 
the identification of optimal IMs under the notions of efficiency, 
practicability, proficiency, and sufficiency.

2. To adapt the Least absolute shrinkage and selection operator (Lasso) 
regression [60] to derive an optimal composed measure as a nu
merical parameter aimed at describing accurately the dynamic 
response of the masonry buildings in terms of specific EDPs.

The proposed methodology is applied to two case study buildings 
initially presented by Tomić et al. [11]. However, this framework may 
be extended to other building types. The first building (Holsteiner Hof) is 
representative of stiff monumental heritage structures, while the second 
(Lausanne Malley) is representative of tall and slender masonry build
ings. The numerical models are developed in the OpenSees software 
[61] using a recently proposed three-dimensional macroelement to 
consider the IP and OOP response of masonry walls [62]. This results in 
an additional advantage compared to previous studies in which the 
activation of OOP failure modes is neglected [63] or assessed separately 
through kinematic limit analysis [64]. A large set of accelerograms is 
selected on the basis of unconditional selection [65], and the seismic 
input is fully characterised afterwards in terms of IMs. The response of 
the structural systems, considering the maximum average roof 
displacement and maximum base shear as EDPs, is examined in the 
cloud form. After the most suitable IMs are identified within PSDMs, 
Lasso regression methodology is adapted to compute the composed 
measure as a linear combination in logarithmic space of the IMs that 
exhibit the best coefficient of determination (R2) within the EDP vs. IM 
regression. Finally, fragility curves are presented to measure the likeli
hood of exceedance of certain levels of average roof displacement in 
terms of IM parameters, considering the composed measure as well.

2. Case studies definition and numerical modelling

Two buildings located in different cities in Switzerland are selected 
as case studies [11]. Each building is representative of (i) stiff monu
mental heritage structures, and (ii) tall and slender residential masonry 
buildings. The following sub-sections present a brief description of the 
buildings’ topology, modelling approach, adopted material and model
ling parameters, assumption for the failure criteria and definition of 
EDPs.

2.1. Description of the buildings’ topology

2.1.1. Holsteiner Hof
The Holsteiner Hof building, located in the city centre of Basel, is a 2- 

storey stone masonry building as depicted in Fig. 2a. The structure was 
built in 1752, following the architectural trend of the time. Thus, it is 
considered a landmark of cultural heritage, and it belongs to the Swiss 
Inventory of Cultural Property of National and Regional Significance. 
The building exhibits a regular rectangular plan with dimensions of 
26.00 m × 14.00 m. The height of each storey is 4.50 m. Wall and 
spandrels thickness are 60 cm and 30 cm, respectively. The triangular 
gables at the top have a thickness of 45 cm. Thinner partitions, which are 
timber frame walls with brick infills ranging from 10 to 15 cm, can be 
found as part of the interior configuration. Nonetheless, their effect is 
neglected in the definition of the model since they are unlikely to in
fluence the seismic response of the building in a significant manner. The 
floor system is composed of timber beams, simply supported on the walls 
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in the shorter direction, and a layer of planks nailed directly to the 
beams. In this sense, horizontal forces are transferred as friction forces 
from the beams to the walls. The roof structure is composed of a sec
ondary truss system. Minor retrofitting interventions were reported 
during 1976–1979 that, in general, did not significantly modify the 
structural system.

2.1.2. Lausanne Malley
Different from the previous case study, this building is representative 

of tall and slender residential URM buildings. The building shown in 
Fig. 3a, is a 6-storey structure built during the second half of the 19th 
century and it is supported on reinforced concrete footings under the 
walls. The building is regular in plan with dimensions of 14.00 m ×
12.00 m. The storey height varies between 2.90 − 3.20 m and the 
thickness decreases from 60 to 25 cm as the building grows in height. 
Thinner partition walls are present on the interior, but they are not 
accounted for in the numerical model. The floor system is composed of 
timber beams, simply supported on the walls in the shorter direction, 
and a layer of planks nailed directly to the beams. Thus, as with the 
Holsteiner Hof building, the horizontal forces are transferred as friction 
forces. The roof system is composed of a wooden truss structure. 
Soundproofing retrofitting measures were taken recently and reported 
in [66].

2.2. Modelling approach

The finite element method (FEM) [67,68] and the discrete element 
method (DEM) [69,70] denote the two main numerical methodologies 
to investigate the non-linear behaviour of masonry structures. Among 
them, the FE macro-modelling is a widely accepted strategy for the 
analysis of the global seismic response of masonry buildings through 
non-linear response history analysis (NLRHA). Both buildings are ide
alised through the equivalent frame model (EFM) approach in which 
façades are discretised into panel-scale components (i.e., piers and 
spandrels) commonly referred to as macroelements linked by rigid nodes 
in which damage is rarely observed [10,71]. Because of their simplicity, 
macroelements are usually implemented to assess the global response of 
masonry buildings through nonlinear dynamic analyses, accounting 
explicitly for different sources of modelling or input uncertainty. In this 
regard, the three-dimensional macroelement formulation introduced by 
Vanin et al. [62] for modelling the IP and OOP response of masonry 
walls is adopted in this research. The macroelement is implemented in 
the OpenSees software [61] and it is formulated as a one-dimensional 
element defined by two nodes at the element ends and one additional 
node at the midspan (See Fig. 1a). The macroelement is able to capture 
the IP and OOP response through three sectional models applied at the 
element ends and at the central section which can reproduce deforma
tion across the main axes. OOP response is coupled with the IP response. 
P-Δ formulation is selected as geometric transformation in OpenSees to 

Fig. 1. General assumptions of the modelling approach. (a) Deformation modes of the macroelement (source Vanin et al. [62]). (b) Frictional constitutive law for 
floor-to-wall interfaces. (c) Tension-damage constitutive law for wall-to-wall interlocking.

D. Caicedo et al.                                                                                                                                                                                                                                Reliability Engineering and System Safety 261 (2025) 111149 

3 



capture second-order non-linear effects. Considering the rotations and 
lumped shear deformations at the central node, drift values can be 
calculated individually for flexural and shear deformations. Exceeding 
the limits in drift values, either δc,flexure or δc,shear, can lead to the loss of 
lateral strength of the element. Such macroelements have been previ
ously used for large-scale representation of masonry buildings [11,72,
73].

Since the timber floors of both buildings are deformable, they cannot 
be idealized as rigid diaphragms. Thus, the floor system is modelled 
using orthotropic elastic membranes with higher stiffness in the direc
tion of the beam span, and a lower stiffness in the remaining direction. 
The membrane definition is given by the two moduli of elasticity in the 
orthogonal directions, shear modulus, and thickness of the diaphragm (i. 
e., Ex, Ey, G xy, and tf, respectively). Although the floors are assumed as 
linear elastic, the floor-to-wall connections are modelled to account for 
non-linear behaviour and potential connection failure that can result in 
the OOP failure of a pier element (i.e., partial or total overturning of the 
façade [74]). To this aim, the floor nodes are modelled independently 
from the nodes defining the walls’ geometry. Zero-length elements are 
used to model the frictional interfaces and possible relative displace
ment between the nodes. As shown in Fig. 1b, frictional sliding is 
allowed in the perpendicular direction to the wall while pounding of the 
beam towards the walls can occur in the opposite direction. Lastly, 
wall-to-wall interfaces are defined as zero-length elements following a 
uniaxial damage tension law with exponential softening and a linear 
elastic behaviour in compression (See Fig. 1c). This interface is used to 
simulate the formation of vertical cracks and separation of the orthog
onal walls due to poor interlocking which can lead to the OOP failure of 
the macroelement.

2.3. Material and modelling parameters

In this study, the numerical model is assumed to be entirely deter
ministic. In other words, no source of uncertainty concerning masonry 
material and modelling parameters is accounted for in the analysis. 
Hence, the modelling parameters are assumed as the mean or median 
values reported in [11] (See Table 1). The properties for the definition of 
the elastic membrane are Ex = 10.0 × 109 Pa; Ey = 0.5 × 109 Pa; G xy =

10.0 × 106 Pa; and tf = 0.04 m. Additional modelling parameters such as 
the pre-peak deformability in shear (Gc) [75], drift at 20 % force ca
pacity loss, and residual friction coefficient (μR) are defined according to 
observations in the literature [75–78].

kfloor, fw, and μf-w, were implemented by Tomić et al. [11] to vary the 
values of the floor stiffness, stiffness of the interlocking interface, and 
the friction coefficient that governs the frictional sliding when ac
counting for material and modelling uncertainties. Nonetheless, the 
median value of 1 implies that their influence is neglected in this 

research since, as it was previously specified, no source of uncertainty 
concerning masonry material and modelling parameters is accounted for 
in the analysis. Additionally, all piers and spandrels were assigned the 
same material properties.

Figs. 2 and 3 depict the Holsteiner Hof and Lausanne Malley build
ings, respectively, as well as the modal shapes of the numerical models 
developed in OpenSees using 3D macroelements. In both structures, the 
direction of the global x-axis coincides with the longitudinal direction of 
the main façade. For the Holsteiner Hof building, the periods computed 
for the first three vibration modes are 0.16 s, 0.14 s, and 0.12 s. The first 
two vibration modes in Fig. 2b and c, correspond almost entirely to 
translation in the two main axes, while the third mode, that is shown in 
Fig. 2d, answers to a more localised mechanism in which mainly the 
gables oscillate with some torsion at the upper corners. Now, for the 
Lausanne Malley building, the first three vibration periods correspond to 
0.50 s, 0.42 s, and 0.33 s. Again, the first two modes depicted in Fig. 3b 
and c correspond to translation but are affected, this time, by the 
torsional effects that can be expected in the case of more tall and slender 
structures. Accordingly, the third one in Fig. 3d is mainly governed by a 
global torsional mode of the building. The results of modal analysis are 
consistent with the distribution of modal periods reported in [11], and 
the ambient vibration measurements of the second case study building, 
summarized in [66].

Lastly, for the nonlinear dynamic simulations, the Rayleigh model is 
assumed (proportional to mass and secant stiffness), calibrated at 5 % on 
the first and sixth frequencies for both buildings. Secant stiffness pro
portional damping model is adopted, in contrast to previous works [11,
72] (which instead adopted initial-stiffness proportional damping), in 
order to avoid overdamping in the OOP mechanism, from the onset of 
the mechanism to failure.

2.4. Failure criterion and EDP definition

The failure criterion adopted in this research is similar to the one 
originally presented by Tomić et al. [11]. The global collapse/failure of 
the structure is reached either by (i) excessive OOP deformation of an 
element, thus, the P − Δ effect causes the loss of the global equilibrium, 
or (ii) triggered by a series of IP failures until the global equilibrium 
cannot be reached. The loss of equilibrium in a particular step of analysis 
triggers problems related to the numerical convergence and stability of 
the solution. Consequently, from this point the numerical solution is 
targeted as a failure, and the partial collapse induced by OOP local 
failure cannot be followed realistically. Alternative approaches, namely, 
discrete elements or applied element method might be a better fit for this 
purpose [84].

Subsequently, a failure characterisation routine is started to check 
the step of the analysis that had a loss of equilibrium. In the first place, 
OOP rotation around the middle node of the pier and relative 
displacement between two floors are considered. OOP failure is 
considered when relative top-bottom displacement is equal to the 
thickness of the element times an OOP limit factor, assumed as 1 in this 
research after Vanin et al. [62]. This process leads to the potential 
identification of two OOP mechanisms, which are central node over
turning and partial overturning. If no OOP failure is encountered, the 
failure mode is classified as IP.

Regarding the IP failure, a macroelement can reach individually 
either the δc,flexure or δc,shear limit. After this point, its lateral stiffness and 
strength are set to zero, but it retains the ability to transfer axial load. 
When 50 % of the piers in the same direction of one storey reach their 
drift limits, the IP failure is triggered and labelled either as flexure or 
shear depending on the number of elements that reached the δc,flexure or 
δc,shear limit, respectively. This failure criterion routine was further 
modified to identify mixed IP failure, meaning that approximately the 
same number of piers exceeded the δc,flexure and δc,shear limits (refer to 
Section 2.3). Analogously, mixed IP-OOP failure locations can be also 
identified.

Table 1 
Masonry and modelling parameters.

Parameter Unit Definition Mean value

Masonry parameters
Em [Pa] Modulus of elasticity [76–78] 3.5 × 109

Gm [Pa] Shear modulus [76–78] 1.5 × 109*

f’cm [Pa] Compressive strength [76–78] 1.3 × 106

cm [Pa] Cohesion [76–78] 2.33 × 105*

μm [-] Friction coefficient [76–78] 0.25*
ρ [kg] Density [76–78] 2000
Modelling parameters
kfloor [-] Floor stiffness factor [79,80] 1*
fw [-] Wall-to-wall connection factor [81] 1*
μf-w [-] Floor-to-wall friction coefficient [72,82] 1*
δc,flexure [-] Drift capacity in flexure [83] 0.01035*
δc,shear [-] Drift capacity in Shear [83] 0.007*
ζ [-] Damping ratio [72] 0.05

Note: (*) symbol over the values, denotes the median value taken from a 
lognormal distribution.
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On the other hand, the selection of adequate EDPs is directly 
conditioned to the limitations of FE macroelement analysis. This 
modelling approach is mainly focused on the analysis of the global 
seismic response of masonry buildings since the a priori idealization of 
the structure in piers and spandrels usually leads to the definition of a 
mechanical system with limited representation of damage (e.g., inade
quate prediction of realistic cracking patterns and complex failure 
mechanisms). Therefore, two global EDPs are selected to study the EDP 
vs. IM trend in the cloud response. These EDPs correspond to the 
maximum average roof displacement and maximum base shear (max 
(Δr) and max(Vb), respectively). The selection of such EDPs is supported 
by investigations focused on the PSDA of building structures [11,58]. 
Hence, this study is limited to the analysis of the global response of the 
buildings in terms of max(Δr) and max(Vb). The evolution of OOP failure 
mechanisms or partial collapse are not examined herein since the usage 
of macroelements to this end might lead to erroneous interpretations.

3. Ground motion selection and IM characterisation

A large set of accelerograms (n = 100) is selected on the basis of 
unconditional selection [65] (not dependent on structural periods). The 
records are selected from a large dataset of seismic records representa
tive of some of the most relevant seismic-prone areas in Europe (i.e., 
Italy, Greece, Turkey, Portugal, etc.). The databases that are considered 
for this task include the reference database for seismic ground motion in 
Europe (RESORCE) [85], the pan-European engineering strong motion 
(ESM) [86], the Turkish accelerometric database provided by disaster 
and emergency management presidency (AFAD) [87], and the Italian 
accelerometric archive (ITACA) [88]. The seismological parameters for 
selection are set as: 4.5 ≤ Mw ≤ 7.8; 90 m/s ≤ Vs30 ≤ 1050 m/s; RJB ≤

185 km, covering, in this way, the widespread European hazard 
consistent with the collected dataset. Fig. 4 shows the 5 % damped 
geometric mean spectral acceleration (Sa) of the selected records, 

alongside the mean, median, and 95 % confidence interval.
The acceleration records are characterised in terms of their seismo

logical parameters and IMs. The goodness of correlation between these 
metrics and the dynamic response of the masonry buildings in terms of 
EDPs will be assessed afterwards. A total of 84 metrics (larger than in 
similar studies conducted before [46,58,59]) are taken into account in 
this research. A classification similar to the one presented by 
Hariri-Ardebili and Saouma [46] is adopted to subdivide IMs into period 
and duration-related, ground motion dependent scalars; ground motion 
dependent compound, structure-independent spectral, and 
structure-dependent spectral IMs. Table 2 provides the definition and 
mathematical formulation for these metrics.

In Table 2, td is the total duration of a particular record. t5, t75, and t95 
are the time values where the 5 %, 75 %, and 95 % of IA are achieved, 
respectively. IA5–75, which is needed for the computation of SIR, is given 
by the IA within the interval t5-t75. Tm and Tp are indicators of frequency 
content. In this sense, Ci and fi refer to the Fourier amplitudes of the 
entire accelerogram and the discrete Fourier transform frequencies in 
the range of 0.25–20 Hz needed for the computation of Tm. Tp simply 
refers to the period at which the maximum spectral acceleration occurs 
in an acceleration response spectrum calculated for 5 % viscous damp
ing. On the other hand, ug is the ground displacement, and the dots over 
u represent the derivatives of the function in time domain, denoting 
velocity and acceleration for one dot and two dots, respectively. Sa, Sv, 
and Sd represent spectral acceleration, velocity, and displacement, 
respectively. PSv is the pseudo-spectral velocity. ζ and T denote the 
damping ratio and period values within the spectra or pseudo-spectra. 
TP

a and TP
v are the periods where Sa and Sv reach the maximum values.

Regarding the structure-dependent IMs, the spectral acceleration, 
velocity, and displacement values are computed for the first 10 vibration 
modes of each structure. Additionally, values of spectral acceleration at 
fixed periods (i.e., T = 0.1, 0.2, 0.5, and 1.0 s) are also analysed. Cor
dova, Sa*, and Vamvatsikos, Sa or Sa, denote structure-dependant IMs 

Fig. 2. Holsteiner Hof building and numerical model using 3D macroelements.
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that implicitly account for the inelastic behaviour by combining spectral 
acceleration ordinates at lengthened versions of the 1st mode of vibra
tion, T1. In this regard, the parameter c for the estimation of Sa* is 

assumed as 2 based on Cordova et al. [104]. Similarly, Ta, Tb, and Tc are 
estimated as Ta = T1; Tb = 1.5T1, and Tc = 2T1 after Vamvatsikos and 
Cornell [105]. Parameters α, β, and γ are derived by giving equal weights 
to the expressions α + β ≤ 1 or α + β + γ ≤ 1, as recommended in [104,
105]. Finally, αi denotes the ratios of effective mass up to the N vibration 
mode of the structure [46,106]. Sa

1-to-N is computed for combinations up 
to the 10th vibration mode for each case study building.

4. Probabilistic seismic demand models

This section provides a comprehensive discussion regarding the 
proposed framework for the development of a PSDM for the seismic 
assessment of historical masonry buildings, considering IP and OOP 
responses. The global regression models derived in this study seek to 
describe the behaviour of the system at different performance levels, 
from the linear range to yielding, up to collapse ultimately. The results of 
the seismic fragility assessment, derived directly from such PSDMs, are 
discussed independently in the next chapter. A brief theoretical back
ground is provided alongside the criteria for optimal IM selection, and 
the basis for the derivation of a composed measure using Lasso regres
sion. The discussion of the results is then presented for each case study 
building.

Fig. 3. Lausanne Malley building and numerical model using 3D macroelements.

Fig. 4. 5 % damped geometric mean Sa of selected records.
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Table 2 
IMs definition and mathematical formulation.

N◦ Parameter Definition Mathematical formulation

Seismological parameters
1 Mw Moment magnitude −

2 Vs30 Shear wave velocity −

3 Repi Epicentral distance −

4 Rrup Rupture distance −

5 RJB Joyner-Boore distance −

6 Rhyp Hypocentral distance −

Period and duration-related IMs
7 D5–75 Significant (Arias) Duration [89] t75 − t5
8 D5–95 t95 − t5
9 Tm Mean period [90] ∑

iCi
2
(

1
fi

)

∑
iCi

2

10 Tp Predominant period max(Sa(ζ= 0.05,T))
Ground motion dependent scalars IMs
11 PGA Peak ground acceleration

max
(

|ü¨g|
)

12 PGV Peak ground velocity max
(
|u̇g |
)

13 PGD Peak ground displacement max
(
|ug |
)

14 aRMS Root-mean-square of acceleration [91]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
td

∫td

0

ü¨g
2dt

√
√
√
√
√

15 vRMS Root-mean-square of velocity
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
td

∫td

0

u̇g
2dt

√
√
√
√
√

16 uRMS Root-mean-square of displacement
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
td

∫td

0

ug
2dt

√
√
√
√
√

17 IA Arias intensity [92] π
2g

∫td

0

u¨g 2dt

18 CAV Cumulative absolute velocity [93] ∫td

0

⃒
⃒
⃒
⃒ü
¨
g

⃒
⃒
⃒
⃒dt

19 CAD Cumulative Absolute Displacement ∫td

0

⃒
⃒u̇g
⃒
⃒dt

20 SED Specific energy density ∫td

0

u˙g 2dt

Ground motion dependent compound IMs
21 PGV/PGA Velocity to Acceleration Ratio −

22 PGV2/PGA −

23 Ia Riddell–Garcia intensity [94] PGA)(D5− 95)
1/3

24 Iv PGA)2/3
(D5− 95)

1/3

25 Id (PGD)(D5− 95)
1/3

26 IF Fajfar intensity [95] (PGV)(D5− 95)
0.25

27 IZ Cosenza and Manfredi intensity [96] ∫ td
0 ü¨g

2dt/(PGA)(PGV)
28 IC Characteristic intensity [97] (aRMS)

1.5(D5− 95)
0.5

29 SIR Shaking intensity rate [98] IA5− 75/D5− 75

Structure-independent spectral IMs
30 EPA Effective peak acceleration [99]

1
2.5

∫0.5

0.1

Sa(ζ=0.05,T)dT

31 EPV Effective peak Velocity [99]
1

2.5

∫1.2

0.8

Sv(ζ=0.05,T)dT

32 IEPA Improved effective peak acceleration [100]
1

2.5

∫Ta
p+0.2

Ta
p − 0.2

Sa(ζ=0.05,T)dT

33 IEPV Improved effective peak velocity [100]
1

2.5

∫Tv
p+0.2

Tv
p − 0.2

Sv(ζ=0.05,T)dT

34 HI Housner intensity [101] ∫2.5

0.1

PSv(ζ=0.05,T)dT

35 ASI Acceleration spectrum intensity [102] ∫0.5

0.1

Sa(ζ=0.05,T)dT

(continued on next page)
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4.1. Brief theoretical background

Determining a PSDM is a crucial step within PBEE. PSDM states the 
conditional probability of an EDP reaching or exceeding a certain level 
of edp, given a seismic IM level, i.e., P(EDP ≥ edp|IM). First of all, the 
results from multiple non-linear time history analyses should be deter
mined to examine the EDP vs. IM cloud response. It is usually observed 
the ηEDP|IM follows a power-law distribution (linear in the logarithmic 
scale) as previously denoted in Eq. (1). Therefore, taking natural loga
rithm on both sides of Eq. (1) leads to: 

ln
(
ηEDP|IM

)
= lna+ blnIM (2) 

Then, the logarithmic standard deviation (also called dispersion) ap
proximates: 

βEDP|IM ≅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(lnedpi− lnηEDP|IM
)2

n− 2

√

(3) 

Ultimately, it is assumed that the conditional seismic demand ex
hibits a lognormal distribution, thus, the results from cloud analysis can 
be aggregated to derive seismic fragility curves or PSDM defined by: 

P(EDP ≥ edp |IM) = 1 − Φ

(
lnedp − ln ηEDP|IM

βEDP|IM

)

(4) 

where Φ is the standard normal cumulative distribution function.

4.2. Optimal IM selection

An optimal IM can positively impact the accuracy of PSDM in esti
mating the seismic response of structural systems, such as historical 
masonry buildings in the context of this research. Commonly, notions of 
efficiency, practicability, proficiency, and sufficiency represent impor
tant metrics for the selection of optimal IMs [107–109]. Additional 
considerations such as correlation and hazard compatibility have also 
been accounted for in previous studies [46,52,53,59]. A brief explana
tion of these notions is provided next.

Efficiency: Efficient IMs exhibit lower variability or dispersion for 
the calculated seismic responses around the regression model [110]. 
Hence, efficiency is measured by the logarithmic standard deviation 
βEDP|IM. Lower values of βEDP|IM denote highly efficient IMs.

Practicability: This notion denotes the dependency of the EDP 

against an IM metric. For linear regression models, as the one to be 
implemented herein, practicability can be estimated by the absolute 
value of the slope |b| in Eq. (2). High |b| values are indicators of 
increased practicability.

Proficiency: is a composed index of efficiency and practicability 
computed as: 

ζ =
βEDP|IM

|b|
(5) 

ζ is also referred to as modified dispersion which simplifies the optimal 
IM identification in terms of the highest practicability and lowest 
dispersion. Overall, lower ζ values indicate more proficient IMs.

Sufficiency: The notion of sufficiency implies the independence of 
the conditional probability distribution of EDP from seismological pa
rameters such as Mw or distance metrics Repi, Rrup, RJB, and Rhyp. Suf
ficiency is calculated based on the p-values from linear regression of the 
residuals, ϵEDP|IM. In general, significance levels greater than 5 % (p >
0.05) are considered to classify an IM parameter as sufficient.

Correlation: This criterion reflects the goodness of fit of the empir
ical regression model. The R2 parameter is adopted to determine the 
goodness of fit. Higher values of R2, closer to 1, imply larger accuracy in 
the prediction of the data trend and less scatter in the regression model.

Regarding hazard compatibility, it corresponds to the level of 
computational requirement in the estimation of hazard curves for a 
particular IM [110]. Nonetheless, the concept is ignored in this inves
tigation not only because of the great advances in processing power 
during the last years but also because of the great potential of ground 
motion models recently proposed [111,112].

4.3. Procedure to find an optimal composed measure

Especially for the case of very complex structures, as can be the case 
of masonry buildings, whose dynamic behaviour is influenced by mul
tiple sources of non-linearity (i.e., materials, second-order effects, floor- 
to-wall, and wall-to-wall connections, etc.) only one IM is not likely to 
provide good predictions for the dynamic response in terms of EDPs 
[28]. For this purpose, a composed measure (Icomp) is proposed as a 
linear combination in the logarithmic space of the IMs that exhibit the 
best R2 within the EDP vs. IM regression. Lasso regression [60] is 
adapted to identify the necessary IMs, and then derive the optimal Icomp 
that best describes the dynamic response of the masonry buildings in 
terms of EDPs. Lasso regression was implemented in the context of 

Table 2 (continued )

N◦ Parameter Definition Mathematical formulation

36 ASI* Modified acceleration spectrum intensity [103] ∫2.0

0.1

Sa(ζ=0.05,T)dT

37 VSI Velocity spectrum intensity ∫2.5

0.1

Sv(ζ=0.05,T)dT

38 DSI Displacement spectrum intensity ∫5.0

2.0

Sd(ζ=0.05,T)dT

Structure-dependent spectral IMs
39–48 Sa(Ti) Sa at the ith vibration mode −

49–58 Sv(Ti) Sv at the ith vibration mode −

59–68 Sd(Ti) Sd at the ith vibration mode −

69 Sa(T = 0.1 s) − −

70 Sa(T = 0.2 s) − −

71 Sa(T = 0.5 s) − −

72 Sa(T = 1.0 s) − −

73 Sa* Cordova intensity [104] (Sa(ζ= 0.05,T1))
α
(Sa(ζ= 0.05,cT1))

β

74 Sa Vamvatsikos intensity [105] (Sa(ζ= 0.05,Ta))
α
(Sa(ζ= 0.05,cTb))

β

75 Sa (Sa(ζ= 0.05,Ta))
α
(Sa(ζ= 0.05,Tb))

β
(Sa(ζ= 0.05,Tc))

γ

76–84 Sa
1-to-N Multiple period intensities [46,106] ∏N

i=1
Sa(ζ= 0.05,Ti)

αi
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PSDMs by Guo et al. [59]. In this study, six IMs were identified as the 
optimal ones for a cable-stayed bridge, which combinedly led to one 
single numerical IM that significantly increased the fitting ability of the 
regression model. Nonetheless, the methodology proposed herein is 
different from the one presented by Guo et al. [59] and it is based on 
Lasso regression’s ability to perform variable selection and regulariza
tion to prevent overfitting and enhance the accuracy of statistical 
models.

In this regard, the objective function to minimize in the Lasso 
regression is mathematically defined as: 

f(θ) =
∑n

i=1

(

yi −
∑m

j=1
xT

ij θj

)2

+ λ
∑m

j=1

⃒
⃒θj
⃒
⃒ (6) 

where θ = [θ1, θ2, …, θm]T is the regression coefficient vector with size m 
denoting the amount of input variables or IMs in this context; xi = [xi,1, 
xi,2, …, xi,m]T is the ith input variable vector out of the n analyses (n =
100, as established in Section 3); accordingly, yi is the ith observed 
response (i.e., value of EDP obtained from time history analyses); and λ 
is the hyperparameter used for regularization that controls the strength 
of the penalty applied to the model coefficients. As λ increases, the more 
the coefficients for regression are shrunk toward zero. Note that the first 
term at the right side of Eq. (6) represents an ordinary least square 
problem, while the term λ

∑m
j=1
⃒
⃒θj
⃒
⃒ is the additional penalty to the 

objective function. This penalty based on the absolute value of the 
regression coefficients, will force some of these coefficients to become 
zero, meaning that the lasso procedure encourages simple models with 
fewer parameters. Hence, the Icomp can be founded as: 

Icomp=
∏m

j=1
IMθj

j (7) 

where the m relevant IMs for the structure under analysis are recognised 
as those that exhibit the best correlation within the EDP vs. IM regres
sion (R2 ≥ 0.6 is assumed in this research as an acceptable level of 
correlation). Icomp has the potential to enhance the EDP-IM correlation at 
a relatively low cost since, in general, the process for its computation is 
simple and straightforward. Yet, this metric does not have a clear unit 
for its measure since it is no longer a physical parameter but rather a 
numerical structure-specific parameter. A Python routine was pro
grammed using the LassoCV class from the scikit-learn library. The 
parameter cv is set as 10, thus, 10-fold cross-validation is implemented 
to automatically find the best λ that minimizes cross-validation error 
[113].

4.4. Discussion of results

4.4.1. Holsteiner Hof
Out of the 100 non-linear dynamic analyses conducted for the Hol

steiner Hof building, 9 failed with an approximate even distribution 
between OOP and IP mechanisms (56 % and 44 %, respectively). For the 
case of IP failure observations, in 75 % of the cases, most of the pier 
elements exceeded the δc,shear, leading to shear IP failure, while the rest 
of the observations corresponded to flexure IP failure. No mixed IP 
failure was observed in this case. In addition, approximately 50 % of the 
IP failures are observed on floor 1 in the “y” direction (F1 y-dir) while 
the rest are evenly distributed between floor 2 in the “x” direction, and 
floor 3 in the “x” direction (F2 x-dir and F3 x-dir, respectively). Simi
larly, for the OOP failure observations, 60 % of them are detected in F1 
y-dir, while the remaining 40 % of OOP failures are distributed between 
F1 x-dir and F2 x-dir. Further, all OOP failure observations correspond to 
overturning around the central node. It is worth to emphasise that these 
statistics correspond to just a small sample of failure observations, i.e., 4 
cases for IP and 5 OOP. Hence, such statistics do not represent conclusive 
evidence to characterise the behaviour at the collapse stage. Other 

methodologies, such as incremental dynamic analyses (IDA) [114]or 
multiple stripe analyses (MSA) [115], can be used for that purpose, 
which is not the aim of this research. A full characterization of the 
collapse mechanism for the Holsteiner Hof building through IDA, sup
porting the reliability of the 3D macroelement modelling approach, was 
recently addressed in [116]. A more comprehensive interpretation of 
these results can be achieved by means of the statistics depicted in Fig. 5.

Results of cloud analysis are presented in Fig. 6(a) and (b) consid
ering the EDPs as the maximum average roof displacement and 
maximum base shear (max(Δr) and max(Vb), respectively. Out of all 
analyses, the maximum values of EDP obtained were max(Δr) = 35.39 
mm, and max(Vb) = 3723 kN. Thus, asymptotic values of 40 mm and 
4000 kN were set to denote the collapse DS for the max(Δr) and the max 
(Vb), respectively. These values correspond to the critical ones before 
collapse, defined by the failure criterion previously exposed [11], or 
simply by problems with numerical convergence and stability of the 
solution. A higher level of scatter is observed in Fig. 6(a) when max(Δr) 
is assumed as EDP.

Table A1 in the appendix reports the values for the assessment of the 
84 IMs considered in this study, based on the criteria previously exposed 
in Section 4.2. IMs with R2 greater than or equal to 0.6, in at least one of 
the two EDPs, are marked in bold. These marked IMs correspond to PGA, 
EPA, IEPA, ASI, Sa*, Sa, and Sa. In all cases, the R2 value is greater when 
the dynamic behaviour is described in terms of max(Vb) rather than max 
(Δr). Such observations are expected based on the scatter shown in Fig. 6
for both EDPs. This behaviour is also coherent with the values of loga
rithmic standard deviation, βEDP|IM, which are always smaller when 
considering max(Vb) as EDP. Similarly, the values of modified disper
sion, ζ, also confirm this hypothesis. Regarding practicability, in gen
eral, all 7 preselected IMs exhibit the highest |b| values of all IMs 
evaluated in Table A1, being the slope always larger for the case of max 
(Δr). In terms of sufficiency, the seven IMs show p-values larger than 
0.05 indicating the sufficiency of the group. In particular, among the 7 
preselected IMs, PGA exhibits the lowest p-values, which are coherent 
with the findings of past investigations where it has been demonstrated 
that PGA predictions are closely related with distance metrics [112,
117–119]. It is also worth noting that all seven preselected IMs are 
acceleration-related metrics. This can be associated with the behaviour 
of short-period structures which are more sensitive to acceleration 
[120]. Outstanding predictions are observed for the dynamic response of 
the building, and regardless of the EDP, using Sa*, Sa, and Sa. This might 
be interpreted since these particular measures account for structural 
damage and period lengthening, which is clearly observed after the 
action of the seismic input through non-linear dynamic analyses. In this 
regard, Fig. 7 shows the PSDM for the individual IMs with R2 ≥ 0.60, 
excluding failure cases from the regression. These regression models 
follow the power-law form described in Eq. (1) that becomes linear in 
the logarithmic space after the transformation in Eq. (2). Other in
vestigations have adopted different assumptions for the prediction of the 
seismic demand, such as polynomial regression, either quadratic [58] or 
cubic [59], or even non-parametric predictive models based on artificial 
neural networks [39,40] to avoid the bias induced by closed-form ex
pressions. However, this research sticks to the power-law approach in 
which the distribution of the seismic demand is assumed to be 
lognormal, useful for the subsequent derivation of Icomp and associated 
fragility functions. In future research, machine-learning models will be 
adopted to predict the seismic demand distribution of historical masonry 
constructions similar to [121,122].

The effect of dispersion is clear for each plot depicted in Fig. 7, 
especially with the max(Δr) as EDP. Thus, although an acceptable fitting 
is achieved, reflected by the R2 values, PSDMs based on only one IM are 
not adequate enough to provide good predictions for the dynamic 
response of the building in terms of the selected EDPs. In this regard, the 
machine learning approach based on Lasso regression is now adapted to 
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Fig. 5. Failure statistics — Holsteiner Hof building.

Fig. 6. Results of cloud analyses — Holsteiner Hof building.
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Fig. 7. PSDM for individual IMs — Holsteiner Hof building.
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provide more accurate PSDMs for both max(Δr) and max(Vb). Icomp can 
be interpreted as the integration of the preselected IMs using the criteria 
R2 ≥ 0.6. Thus, Icomp is directly related to the performance of the 
structure under analysis. The procedure for the computation of Icomp was 
described thoroughly in the previous section of the manuscript. Table 3
summarizes the regression coefficients, θi, associated with each of the 
preselected IMs for both EDPs. Fig. 8 shows the PSDMs by using Icomp as 
the independent variable. Icomp

(1) and Icomp
(2) in the “x” axis of each 

subplot corresponds to its computation after using the first or second 
combination of θi reported in Table 3, since Icomp is calculated separately 
for the two EDPs under analysis (i.e., max(Δr) and max(Vb), 
respectively).

A considerable improvement is observed for both PSDMs in terms of 
R2 values and dispersion, especially for the case of max(Δr) in which R2 

increased up to 0.77 and dispersion reduced up to 0.37. The best values 
within the max(Δr) regression using single IM were R2 = 0.73 and β =
0.40, either with EPA or ASI. However, for the case of the max(Vb) vs. 
Icomp regression, the improvement was marginal, being the results 
comparable to the ones obtained through EPA or ASI individually. 
Another important thing to stress is that, regardless of the EDP adopted 
in the PSDM, the slope b in the regression model will always tend to 1 
because of the mathematical formulation proposed for Icomp (See Eq. 
(7)). Thus, the practicability of Icomp is unconditional and invariant. It is 
observed how some of the coefficients, specifically for max(Vb) as EDP, 

Fig. 7. (continued).

Table 3 
Regression coefficients — Holsteiner Hof building.

EDP Regression coefficients θi

PGA EPA IEPA ASI Sa* Sa Sa

max(Δr) 0.48 1.16 − 0.13 0.16 0.07 − 1.38 1.69
max(Vb) 0.06 0.15 0.23 0.00 0.00 0.00 0.21
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Fig. 8. PSDM with Icomp as independent variable using LASSO regression — Holsteiner Hof building.

Fig. 9. Failure statistics — Lausanne Malley building.
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drop to zero after minimization, which demonstrates the capability of 
Lasso regression to derive simple and accurate models with fewer 
variables.

4.4.2. Lausanne Malley
On this occasion 28 out of the 100 conducted non-linear dynamic 

analyses failed, 32 % of the time IP and 68 % OOP. Regarding IP failures, 
67 % of the observations corresponded to flexure failure while the rest of 
them were classified as mixed IP. Moreover, all IP failures are observed 
at the upper storeys with >50 % concentrated at the last top-storey level, 
either F5 x-dir or F5 y-dir. Around 10 % and 30 % were observed at F4 x- 
dir and mixed locations, respectively. Similarly, OOP failures are also 
detected at upper stories with almost 50 % of the occurrences concen
trated at F5 x-dir and the others evenly distributed among F3 x-dir, F4 x- 
dir, F4 y-dir, and F5 y-dir. Regardless of the small portion of collapse 
cases, the observation of failure mainly at upper stories is consistent 
with previous findings in the literature [116,123] supporting the vali
dation of the modelling approach. All the collapse information is sum
marized in Fig. 9. In addition, the cloud response of the analyses is 
presented in Fig. 10. The maximum computed EDPs corresponded to 
max(Δr) = 42.26 mm, and max(Vb) = 4971 kN. Consequently, collapse is 
denoted by asymptotic values of 45 mm and 5000 kN for the max(Δr) 
and the max(Vb), respectively.

The values for the assessment of IMs in terms of efficiency, practi
cability, proficiency, sufficiency, and correlation are reported in 
Table A2. As with the Holsteiner Hof building, the same criterion is 
adopted to preselect the best IMs (i.e., correlation greater than or equal 
to 0.6). The pre-selected IMs correspond, in this case, to PGV, ASI*, VSI, 
Sa(T1), Sv(T1), Sd(T1), Sa*, Sa, and Sa. In terms of practicability, the slope 
b is always greater when the preselected IMs are implemented to 
describe the dynamic behaviour of the building in terms of max(Δr) 
rather than max(Vb). Although the measurement of efficiency seems to 
be better for the global max(Vb), the values of modified dispersion, ζ, 
favour the response in terms of max(Δr) with a mean value in the order 
of 0.30; while for the max(Vb) the values of ζ oscillate around a mean 
value of 0.42. In general, most the IMs under analysis exhibit p-values 
larger than 0.05 implying the sufficiency of the group. Different than for 
the first case study building, the 9 pre-selected measure do not corre
spond directly to acceleration-related metrics. On this occasion, the 
analysis also pointed out some velocity and even displacement-related 
IMs, such as PGV, VSI, Sv(T1), and Sd(T1). These observations are in 
agreement with the findings of [28] indicating that complex structures 
such as URM buildings require a large number of IMs to achieve 
acceptable predictions in their dynamic performance. Further, previous 
investigations have linked the sensitivity of OOP failures, which are 

largely observed for the Lausanne Malley building (19 out of 28 collapse 
cases), to velocity-related metrics [124]. Overall, the best predictions 
were achieved by means of Sa(T1). Sv(T1), Sd(T1), and Sa, accounting this 
last one for structural damage and period lengthening. Fig. 11 shows the 
PSDM for Lausanne Malley building considering individual IMs with R2 

≥ 0.60.
Again, a linear trend is clearly observed within the regression models 

depicted in Fig. 11 which validates the assumptions of the power-law 
model mathematically described in Eq. (1). Among them, the best 
regression models relate to Sa(T1) and Sd(T1) for the max(Δr), and PGV 
for the max(Vb), exhibiting R2 values of 0.75 and 0.66, respectively. 
Now, the methodology proposed in Section 4.3 is applied to derive a 
composed measure able to predict the dynamic behaviour of the 
building with better accuracy. Fig. 12 portrays the PSDMs derived after 
Icomp for both global EDPs under analysis. As in the previous section, 
Icomp

(1) and Icomp
(2) correspond to the combination of the regression co

efficients, θi, for the max(Δr) and max(Vb) models, respectively. Table 4
summarizes the regression coefficients, θi, associated with each of the 9 
preselected IMs for both EDPs. The correlation values obtained from the 
LASSO regression correspond to R2 = 0.84 for the max(Δr) and R2 = 0.77 
for the max(Vb), indicating a considerable enhancement against PSDM 
with single IMs. Dispersion was also improved, reducing the values to 
0.21 and 0.12 for the max(Δr) and max(Vb), respectively. As in the 
previous case, the slope b within the regression model tend to the unit 
value leading to ζ = βEDP|IM (i.e., proficiency nearly identical to effi
ciency). Overall, the proposed Icomp stands as an optimal measure for the 
analysis of the dynamic response of masonry buildings offering clear 
enhancements in terms of correlation, efficiency, practicability, and 
proficiency. The effect of Icomp in the seismic fragility analysis of ma
sonry structures is addressed in the next section.

5. Seismic fragility analysis

The final part of this study focuses on the presentation and discussion 
of PSDM-based fragility curves obtained after the aggregation of the 
results from cloud analysis. Fragility curves are a key component of risk 
assessment; they provide a probabilistic measure of vulnerability to 
hazards, which is essential for estimating potential losses and guiding 
risk mitigation strategies. In the context of PBEE and risk assessment, 
fragility curves for building structures are commonly associated with the 
probability of exceedance of diverse levels of displacement-related 
metrics rather than base shear [42,43]. Furthermore, roof displace
ment represents a familiar measure to most practitioners and re
searchers in the field of civil and structural engineering. Therefore, the 
max(Δr) is selected as EDP to show the likelihood of exceedance of 
certain levels of DS in terms of the optimal individual IMs and the Icomp 

Fig. 10. Results of cloud analyses — Lausanne Malley building.
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Fig. 11. PSDM for individual IMs — Lausanne Malley building.

D. Caicedo et al.                                                                                                                                                                                                                                Reliability Engineering and System Safety 261 (2025) 111149 

15 



Fig. 11. (continued).
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as well. The implementation of Eq. (4) requires the collapse DS to be 
bounded by a user-defined limit in order to account for very large data 
points that can be obtained from the collapse or instability of the nu
merical model. These limits answer to the asymptotic values of max(Δr) 
defined previously in Sections 4.4.1 and 4.4.2 as 40 mm and 45 mm for 
the Holsteiner Hof and Lausanne Maley, respectively (See Figs. 6a and 
a). A similar approach for the derivation of fragility functions can be 

found in [46,52,53].
For the sake of simplicity, four DSs are identified after performing 

the non-linear dynamic analysis on each case study building. These DSs 
are defined as (i) Global collapse; (ii) Collapse prevention; (iii) Moderate 
to severe; and (iv) Slight to moderate damage, and they are linked to 
different edp levels in terms of the max(Δr). The levels of edp were 
estimated from the equivalence of drift-based DSs for the same buildings 
[116] and validated through observations in historical masonry struc
tures with similar features [125–127]. Table 5 provides the levels of edp 
associated with the four DS that are considered in the fragility assess
ment of each case study building. It should be stressed that such limits 
correspond to reference values from the literature since the objective of 
this paper is not the investigation of global limits of EDPs at different 
performance levels. Another relevant feature of the fragility curves 
derived in this study is that they consider a unique value of β (standard 
deviation) for all DS, as these curves are a direct result of the global 
regression models analysed previously. As in the previous section, the 
discussion of the fragility assessment is presented for each case study 

Fig. 11. (continued).

Fig. 12. PSDM with Icomp as independent variable using LASSO regression — Lausanne Malley building.

Table 4 
Regression coefficients — Lausanne Malley building.

EDP Regression coefficients θi

PGV ASI* VSI ASI Sa(T1) Sv(T1) Sd(T1) Sa* Sa Sa

max(Δr) 0.62 0.00 − 0.35 0.62 0.00 0.00 − 0.02 0.30 0.00 0.62
max(Vb) 0.45 0.23 − 0.35 0.00 0.26 0.00 0.00 0.00 0.00 0.45

Table 5 
Definition of the DSs for seismic assessment of each case study building [116,
125–127].

DS Level of edp

Holsteiner Hof Lausanne Malley

Global collapse edp ≥ 40 mm edp ≥ 45 mm
Collapse prevention 25 mm ≤ edp < 40 mm 25 mm ≤ edp < 45 mm
Moderate to severe 15 mm ≤ edp < 25 mm 15 mm ≤ edp < 25 mm
Slight to moderate 10 mm ≤ edp < 15 mm 10 mm ≤ edp < 15 mm
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Fig. 13. Comparison of fragility curves based on IM parameter — Holsteiner Hof building.
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building.

5.1. Holsteiner Hof

Fig. 13 shows the comparison of fragility curves derived for each of 
the preselected IMs with R2 ≥ 0.6 and the Icomp. Using these curves, the 
probability of exceedance of various levels of edp can be estimated from 
prior knowledge of a specific value of IM. For instance, the probability of 
collapse of the Holsteiner Hof building at PGA = 0.50 g is less than <40 
%. Regardless of the improvements gained with Icomp within the PSDMs 
(e.g., higher R2, less dispersion, and constant practicability), one major 
drawback is that units for this metric are not well defined since it is no 
longer a physical parameter but rather numerical, as previously dis
cussed in Section 4.3. Thus, the comparison among curves with other 
IMs as independent variables cannot be direct. To overcome this limi
tation min-max normalization is applied to the values of IM, thus, they 
can be contrasted. Within this process, regardless of the unit, the 
maximum value of IM for each curve gets transformed into a 1, and 
every other value gets transformed into a decimal between 0 and 1. A 
similar approach for comparison of fragility in terms of different IMs was 
presented in [49,52]. Fig. 14 presents the fragility curves, reorganized at 
different levels of edp, considering the normalized values of IM in the 
x-axis through the min-max scaling.

It is seen that the Sa*, Sa, Sa, and Icomp deliver less conservative 
predictions when compared to the other IMs. As mentioned previously, 
these metrics take into account the occurrence of damage during the 
analysis through the lengthening of structural periods. Moreover, these 
predictions are in agreement with the distribution of the empirical data 
within the regression models depicted in Fig. 7 and Fig. 8. Specifically, 
at edps equal to 40 mm and 25 mm (i.e., collapse and near collapse DSs) 

the prediction of exceedance is less conservative using the Icomp, and its 
performance is comparable with the results of Sa*, Sa, and Sa as well as 
PGA. For less critical DSs, the performance of Icomp seems to be around 
the average of the predictions obtained using the other IMs. Thus, for 
such DSs (edp = 15 mm; edp = 10 mm) good estimations of the dynamic 
response can be achieved using any of the preselected IM parameters (R2 

≥ 0.60) as the independent variable.

5.2. Lausanne Malley

The fragility curves in terms of PGV, ASI*, VSI, Sa(T1), Sv(T1), Sd(T1), 
Sa*, Sa, Sa, and Icomp are depicted in Fig. 15. Although comparison cannot 
be made directly with the fragility plots derived for the Holsteiner Hof 
building, it can be easily inferred that the Lausanne Malley building 
denotes a more vulnerable masonry structure. For instance, a probability 
of collapse higher than 80 % is computed for PGV = 0.3 m/s or Sa(T1) =
0.60 g. In general, the performance of all IMs under analysis, including 
Icomp, seems comparable regardless of the DS. To validate this statement, 
normalized fragility curves are presented in Fig. 16 separately as the 
probability of exceedance of each level of edp defined in Table 5. 
Effectively, the prediction of exceeding the corresponding value of edp at 
each DS is similar for any of the assessed IMs, being the prediction 
computed through Icomp approximately on the average of all predictions. 
This behaviour can be related to the number of preselected IMs (larger 
than for the Holsteiner Hof building) with acceptable levels of correla
tion and comparable performance, as it was previously depicted in 
Fig. 11. Moreover, Fig. 16(c) and (d) highlight the large probability of 
exceeding edp levels of 15 mm and 10 mm (i.e., severe to moderate 
damage) at relatively lower levels of IM. Lastly, the observation of 
probabilities higher than 0 at IM levels equal or near to 0 can be 

Fig. 14. Normalized fragility curves at different levels of edp — Holsteiner Hof building.
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Fig. 15. Comparison of fragility curves based on IM parameter — Lausanne Malley building.
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attributed to the limitations of PSDM-based fragility using single β 
values. Within such global regression models low-intensity records that 
can induce slight to moderate damage are limited, making it difficult the 
characterisation of DSs defined by lower levels of epd. Similar observa
tions were briefly reported by Hariri-Ardebili and Saouma [46] in 
fragility surfaces of concrete dams at low levels of edp. In this regard, 
some other methodologies can be used, such as IDA in [116], for the 
characterisation of dynamic behaviour at different performance levels, 
or other cloud-based methods to obtain mean and standard deviation 
independently for each DS [128,129].

6. Conclusions

Identification of optimal intensity measures (IMs) and probabilistic 
seismic demand (PSDA) of two case study historical masonry buildings 
was addressed in this paper. Both buildings were modelled in the 
OpenSees software package using three-dimensional macroelements 
that consider the in-plane (IP) and out-of-plane (OOP) response of ma
sonry walls. A large set of accelerograms (n = 100) was selected using 
unconditional selection (i.e., non-dependent from structural periods). A 
total of 84 metrics, including seismological parameters, and IMs sub- 
divided into period and duration-related, ground motion dependent 
scalars, ground motion dependent compound, structure-independent 
spectral, and structure-dependent spectral IMs were examined 

Fig. 15. (continued).

Fig. 16. Normalized fragility curves at different levels of edp — Lausanne Malley building.
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according to the notions of efficiency, practicability, proficiency, and 
sufficiency. A composed measure, calibrated for each engineering de
mand parameter (EDP) and structure, was further proposed as a linear 
combination in logarithmic space of the IMs with the best correlation in 
the EDP vs. IM regression. Consistent probabilistic seismic demand 
models (PSDMs) and fragility curves were derived from cloud analysis 
afterwards.

For the Holsteiner Hof building the best ranked IMs corresponded to 
PGA, EPA, IEPA, ASI, Sa*, Sa and Sa; all of them acceleration-related 
metrics. Great performance was observed in the PSDMs, even at 
collapse damage state (DS) (independently of IP or OOP mechanism), 
when structural damage and period lengthening was accounted for using 
Sa*, Sa, and Sa. On the other hand, 9 IMs were identified as the most 
suitable for the prediction of the seismic performance of the Lausanne 
Malley building. These 9 measures were a combination of acceleration, 
velocity and even displacement-related IMs, including PGV, ASI*, VSI, 
Sa(T1), Sv(T1), Sd(T1), Sa*, Sa, and Sa. The influence of velocity and 
displacement metrics, besides acceleration-related ones, is consistent 
with former findings on the OOP seismic resistance of masonry walls. 
For both case study buildings, the derived Icomp showed clear enhance
ments in terms of correlation, efficiency, practicability, and proficiency, 
increasing the values of correlation up to 0.84 and 0.81 for the max(Δr) 
and max(Vb), compared to a maximum of R2 equals to 0.75 and 0.80 for 
the same EDPs that was obtained through PSDMs with individual IMs. 
Regarding the fragility analysis of the Holsteiner Hof building, Sa*, Sa, 
Sa, and Icomp provided less conservative predictions at the collapse DS 
(edp = 40 mm). Similar behaviour was observed at near collapse, while 
for severe and moderate DS the predictions were comparable regardless 
of the IM parameter. Conversely, the Lausanne Malley building was 
found to be significantly more vulnerable with similar predictions in the 
fragility analysis at different DSs regardless of the IM input parameter.

Finally, the proposed framework seems adequate for the identifica
tion of adequate IMs and derivation of optimal composed measures for 
the PSDA of historic masonry buildings. Certainly, the derivation of an 
optimal composite IM is useful to enhance the EDP-IM correlation with a 
reasonable computational burden. This metric denotes a numerical 
parameter specific to each building and EDP with no associated units. 
Moreover, the methodology based on Lasso regression demonstrated the 
capability for identification of the most relevant IMs, especially for the 
case of complex structural systems with a large influence of non-linear 
effects where the dynamic behaviour is difficult to predict employing 
single or conventional metrics. Since the numerical results derived from 
this research are structure-specific (i.e., dependent on the case study 

under analysis) future work should focus on different structural typol
ogies and analysing the consistency of the fragility curves derived from 
the cloud-based approach against other methodologies such as multiple- 
record incremental dynamic analyses.
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Appendix

Table A1, Table A2

Table A1 
Values for the assessment of the optimal IM — Holsteiner Hof building.

EDP max(Δr) max(Vb)

IM b βEDP|IM ζ R2 p-value b βEDP|IM ζ R2 p-value

Mw Repi Rrup RJB Rhyp Mw Repi Rrup RJB Rhyp

Seismological IMs
Mw 0.74 0.77 1.04 0.01 0.96 0.02 0.01 0.01 0.02 0.25 0.24 0.96 0.02 0.98 0.00 0.00 0.00 0.00
Vs30 0.14 0.77 5.52 0.01 0.32 0.11 0.06 0.06 0.11 0.04 0.24 5.50 0.01 0.29 0.04 0.02 0.02 0.04
Repi − 0.20 0.75 − 3.78 0.05 0.01 0.79 0.95 0.98 0.80 − 0.07 0.24 − 3.20 0.07 0.00 0.94 0.82 0.83 0.94
Rrup − 0.24 0.75 − 3.08 0.06 0.00 0.62 0.85 0.83 0.62 − 0.08 0.24 − 2.83 0.07 0.00 0.88 0.90 0.90 0.87
RJB − 0.20 0.75 − 3.65 0.06 0.01 0.70 0.95 0.92 0.71 − 0.07 0.24 − 3.15 0.07 0.00 0.87 0.90 0.91 0.87
Rhyp − 0.22 0.75 − 3.39 0.05 0.01 0.78 0.97 0.99 0.78 − 0.08 0.24 − 2.98 0.06 0.00 0.98 0.78 0.78 0.97
Period and duration-related IMs
D5–75 − 0.35 0.72 − 2.08 0.12 0.00 0.91 0.85 0.89 0.93 − 0.11 0.23 − 2.14 0.11 0.00 0.65 0.46 0.47 0.64

(continued on next page)
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Table A1 (continued )

EDP max(Δr) max(Vb)

IM b βEDP|IM ζ R2 p-value b βEDP|IM ζ R2 p-value

Mw Repi Rrup RJB Rhyp Mw Repi Rrup RJB Rhyp

D5–95 − 0.39 0.73 − 1.85 0.11 0.00 0.92 0.83 0.87 0.94 − 0.12 0.23 − 1.94 0.10 0.00 0.62 0.43 0.44 0.62
Tp − 0.10 0.77 − 7.71 0.01 0.22 0.15 0.08 0.08 0.15 − 0.03 0.24 − 7.55 0.01 0.19 0.05 0.03 0.03 0.05
Tm − 0.11 0.77 − 7.24 0.00 0.18 0.18 0.09 0.10 0.17 − 0.07 0.24 − 3.62 0.01 0.10 0.10 0.05 0.05 0.10
Ground motion dependent scalars IMs
PGA 1.46 0.50 0.35 0.57 0.01 0.07 0.11 0.09 0.08 0.49 0.15 0.30 0.63 0.00 0.17 0.24 0.21 0.18
PGV 0.97 0.62 0.64 0.36 0.01 0.00 0.00 0.00 0.00 0.30 0.20 0.65 0.35 0.02 0.00 0.00 0.00 0.00
PGD 0.23 0.74 3.23 0.08 0.31 0.00 0.00 0.00 0.00 0.08 0.23 3.03 0.10 0.28 0.00 0.00 0.00 0.00
aRMS 1.12 0.59 0.53 0.41 0.31 0.08 0.05 0.05 0.09 0.34 0.19 0.57 0.37 0.44 0.02 0.01 0.01 0.02
vRMS 0.45 0.70 1.57 0.16 0.09 0.00 0.00 0.00 0.00 0.13 0.23 1.77 0.13 0.20 0.00 0.00 0.00 0.00
uRMS 0.15 0.75 4.85 0.06 0.47 0.00 0.00 0.00 0.00 0.05 0.24 4.63 0.06 0.46 0.00 0.00 0.00 0.00
IA 0.83 0.59 0.71 0.42 0.05 0.00 0.00 0.00 0.00 0.28 0.17 0.62 0.49 0.02 0.00 0.00 0.00 0.00
CAV 0.27 0.76 2.82 0.03 0.81 0.02 0.01 0.01 0.02 0.12 0.24 2.04 0.05 0.99 0.00 0.00 0.00 0.00
CAD 0.07 0.77 10.28 0.01 0.56 0.04 0.02 0.02 0.04 0.03 0.24 7.12 0.02 0.67 0.01 0.00 0.00 0.01
SED 0.16 0.74 4.54 0.08 0.43 0.00 0.00 0.00 0.00 0.05 0.23 4.48 0.08 0.46 0.00 0.00 0.00 0.00
Ground motion dependent compound IMs
PGV/PGA − 0.06 0.77 − 13.43 0.00 0.18 0.17 0.09 0.10 0.17 − 0.04 0.24 − 5.93 0.01 0.09 0.11 0.06 0.06 0.11
PGV2/PGA 0.29 0.73 2.54 0.10 0.39 0.00 0.00 0.00 0.00 0.08 0.23 2.82 0.08 0.55 0.00 0.00 0.00 0.00
Ia 1.61 0.56 0.35 0.48 0.72 0.22 0.15 0.17 0.22 0.55 0.16 0.30 0.55 0.66 0.05 0.03 0.03 0.05
Iv 0.51 0.74 1.44 0.08 0.52 0.00 0.00 0.00 0.00 0.16 0.24 1.46 0.08 0.58 0.00 0.00 0.00 0.00
Id 0.13 0.76 5.69 0.04 0.79 0.01 0.00 0.00 0.01 0.05 0.24 5.20 0.04 0.74 0.00 0.00 0.00 0.00
IF 0.63 0.69 1.10 0.19 0.10 0.00 0.00 0.00 0.00 0.20 0.22 1.12 0.18 0.13 0.00 0.00 0.00 0.00
IZ − 0.79 0.69 − 0.87 0.20 0.10 0.28 0.19 0.21 0.27 − 0.22 0.22 − 1.00 0.16 0.10 0.09 0.06 0.06 0.09
IC 0.53 0.68 1.29 0.22 0.16 0.00 0.00 0.00 0.00 0.16 0.22 1.39 0.19 0.25 0.00 0.00 0.00 0.00
SIR 0.64 0.52 0.80 0.55 0.00 0.07 0.12 0.10 0.08 0.21 0.15 0.71 0.61 0.00 0.18 0.26 0.24 0.20
Structure-independent spectral IMs
EPA 2.00 0.40 0.20 0.73 0.24 0.34 0.40 0.38 0.34 0.66 0.11 0.17 0.80 0.14 0.84 0.87 0.89 0.81
EPV 0.77 0.67 0.88 0.24 0.45 0.00 0.00 0.00 0.00 0.23 0.22 0.94 0.22 0.58 0.00 0.00 0.00 0.00
IEPA 1.75 0.49 0.28 0.60 0.21 0.69 0.83 0.81 0.69 0.62 0.12 0.20 0.74 0.10 0.95 0.85 0.83 0.98
IEPV 0.88 0.64 0.73 0.31 0.14 0.00 0.00 0.00 0.00 0.24 0.21 0.88 0.23 0.33 0.00 0.00 0.00 0.00
HI 0.61 0.69 1.14 0.19 0.25 0.00 0.00 0.00 0.00 0.19 0.22 1.17 0.18 0.30 0.00 0.00 0.00 0.00
ASI 2.00 0.40 0.20 0.73 0.24 0.34 0.40 0.38 0.34 0.66 0.11 0.17 0.80 0.14 0.84 0.87 0.89 0.81
ASI* 1.40 0.56 0.40 0.46 0.07 0.00 0.00 0.00 0.00 0.44 0.18 0.41 0.46 0.09 0.00 0.00 0.00 0.00
VSI 0.96 0.64 0.67 0.31 0.11 0.00 0.00 0.00 0.00 0.30 0.20 0.67 0.31 0.13 0.00 0.00 0.00 0.00
DSI 0.16 0.75 4.71 0.04 0.86 0.01 0.01 0.01 0.01 0.06 0.24 3.97 0.05 0.74 0.00 0.00 0.00 0.00
Structure-dependent spectral IMs
Sa(T1) 0.95 0.60 0.63 0.39 0.02 0.25 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.51 0.42
Sa(T2) 0.95 0.60 0.63 0.39 0.02 0.25 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.51 0.42
Sa(T3) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T4) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T5) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T6) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T7) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T8) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T9) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T10) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sv(T1) 0.71 0.64 0.90 0.31 0.02 0.33 0.47 0.42 0.35 0.24 0.20 0.80 0.36 0.01 0.54 0.69 0.66 0.55
Sv(T2) 0.71 0.64 0.90 0.31 0.02 0.33 0.47 0.42 0.35 0.24 0.20 0.80 0.36 0.01 0.54 0.69 0.66 0.55
Sv(T3) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T4) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T5) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T6) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T7) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T8) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T9) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sv(T10) 0.51 0.67 1.32 0.25 0.01 0.28 0.41 0.38 0.30 0.18 0.20 1.13 0.31 0.00 0.37 0.50 0.48 0.39
Sd(T1) 0.95 0.60 0.63 0.39 0.02 0.25 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.50 0.42
Sd(T2) 0.95 0.60 0.63 0.39 0.02 0.25 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.50 0.42
Sd(T3) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T4) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T5) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T6) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T7) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T8) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T9) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sd(T10) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.18 0.67 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T = 0.1 s) 0.77 0.63 0.82 0.34 0.00 0.13 0.21 0.18 0.14 0.27 0.19 0.68 0.43 0.00 0.15 0.22 0.20 0.15
Sa(T = 0.2 s) 1.18 0.57 0.48 0.46 0.11 0.72 0.93 0.88 0.75 0.42 0.16 0.38 0.58 0.05 0.99 0.81 0.83 0.98
Sa(T = 0.5 s) 1.19 0.61 0.52 0.37 0.63 0.01 0.00 0.00 0.01 0.31 0.21 0.69 0.24 0.97 0.00 0.00 0.00 0.00
Sa(T = 1.0 s) 0.45 0.72 1.58 0.14 0.73 0.01 0.00 0.00 0.01 0.13 0.23 1.77 0.11 0.90 0.00 0.00 0.00 0.00
Sa* 1.72 0.43 0.25 0.68 0.11 0.13 0.16 0.15 0.13 0.55 0.14 0.25 0.69 0.08 0.51 0.53 0.54 0.49
Sa 1.34 0.52 0.39 0.54 0.04 0.24 0.33 0.30 0.25 0.48 0.14 0.29 0.68 0.01 0.28 0.37 0.34 0.29

Sa
1.75 0.43 0.25 0.69 0.17 0.27 0.32 0.30 0.27 0.59 0.11 0.19 0.78 0.09 0.59 0.61 0.62 0.58

(continued on next page)
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Table A1 (continued )

EDP max(Δr) max(Vb)

IM b βEDP|IM ζ R2 p-value b βEDP|IM ζ R2 p-value

Mw Repi Rrup RJB Rhyp Mw Repi Rrup RJB Rhyp

Sa
1-to-2 0.95 0.60 0.63 0.39 0.02 0.25 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.51 0.42

Sa
1-to-3 0.95 0.60 0.63 0.39 0.02 0.24 0.36 0.32 0.26 0.33 0.18 0.55 0.46 0.01 0.41 0.53 0.50 0.41

Sa
1-to-4 0.95 0.60 0.63 0.39 0.02 0.21 0.31 0.28 0.22 0.33 0.18 0.55 0.46 0.01 0.35 0.46 0.43 0.35

Sa
1-to-5 0.95 0.60 0.63 0.39 0.02 0.21 0.31 0.28 0.22 0.33 0.18 0.55 0.46 0.01 0.35 0.46 0.43 0.35

Sa
1-to-6 0.94 0.60 0.64 0.39 0.01 0.17 0.26 0.23 0.18 0.33 0.18 0.55 0.47 0.00 0.27 0.36 0.34 0.27

Sa
1-to-7 0.94 0.60 0.64 0.39 0.01 0.17 0.26 0.23 0.18 0.33 0.18 0.55 0.47 0.00 0.27 0.36 0.34 0.27

Sa
1-to-8 0.94 0.60 0.64 0.39 0.01 0.17 0.26 0.23 0.18 0.33 0.18 0.55 0.47 0.00 0.27 0.36 0.34 0.27

Sa
1-to-9 0.94 0.60 0.64 0.39 0.01 0.17 0.26 0.23 0.18 0.33 0.18 0.55 0.47 0.00 0.27 0.36 0.34 0.27

Sa
1-to-10 0.94 0.60 0.64 0.39 0.01 0.17 0.26 0.23 0.18 0.33 0.18 0.55 0.47 0.00 0.27 0.36 0.34 0.27

Table A2 
Values for the assessment of the optimal IM — Lausanne Malley building.

EDP max(Δr) max(Vb)

IM b βEDP|IM ζ R2 p-value b βEDP|IM ζ R2 p-value

Mw Repi Rrup RJB Rhyp Mw Repi Rrup RJB Rhyp

Seismological IMs
Mw 1.36 0.49 0.36 0.09 0.95 0.23 0.15 0.17 0.21 0.27 0.25 0.91 0.02 0.95 0.06 0.03 0.03 0.06
Vs30 − 0.15 0.51 − 3.43 0.02 0.01 0.69 0.99 0.93 0.75 − 0.06 0.25 − 4.43 0.01 0.22 0.21 0.12 0.12 0.20
Repi 0.00 0.52 334.01 0.00 0.01 0.69 0.96 0.90 0.75 − 0.07 0.24 − 3.29 0.07 0.01 0.47 0.69 0.66 0.50
Rrup − 0.02 0.52 − 24.04 0.00 0.01 0.50 0.75 0.69 0.56 − 0.08 0.24 − 2.88 0.07 0.01 0.44 0.64 0.62 0.46
RJB − 0.01 0.52 − 47.62 0.00 0.01 0.57 0.83 0.77 0.63 − 0.08 0.24 − 3.13 0.08 0.01 0.38 0.57 0.54 0.40
Rhyp − 0.01 0.52 − 97.42 0.00 0.01 0.63 0.90 0.84 0.69 − 0.08 0.24 − 3.05 0.06 0.01 0.53 0.75 0.73 0.55
Period and duration-related IMs
D5–75 0.05 0.51 11.33 0.00 0.02 0.84 0.88 0.94 0.90 − 0.08 0.24 − 3.25 0.05 0.07 0.63 0.44 0.46 0.60
D5–95 0.03 0.52 14.80 0.00 0.01 0.79 0.93 0.99 0.85 − 0.10 0.24 − 2.56 0.06 0.06 0.73 0.52 0.55 0.70
Tp 0.30 0.49 1.65 0.09 0.07 0.61 0.39 0.42 0.57 0.05 0.25 4.69 0.01 0.42 0.12 0.06 0.06 0.11
Tm 0.53 0.47 0.88 0.18 0.28 0.16 0.08 0.08 0.15 0.10 0.25 2.45 0.03 0.63 0.05 0.03 0.03 0.05
Ground motion dependent scalars IMs
PGA 0.52 0.47 0.91 0.17 0.00 0.02 0.05 0.04 0.03 0.40 0.19 0.47 0.43 0.03 0.07 0.10 0.08 0.08
PGV 0.91 0.31 0.34 0.63 0.64 0.63 0.60 0.66 0.59 0.45 0.15 0.33 0.66 0.00 0.00 0.00 0.00 0.00
PGD 0.38 0.40 1.07 0.39 0.25 0.07 0.06 0.06 0.06 0.14 0.22 1.51 0.24 0.06 0.00 0.00 0.00 0.00
aRMS 0.51 0.45 0.88 0.24 0.17 0.39 0.54 0.50 0.43 0.30 0.20 0.66 0.36 0.49 0.30 0.24 0.23 0.31
vRMS 0.48 0.40 0.82 0.41 0.28 0.12 0.10 0.10 0.12 0.20 0.21 1.04 0.30 0.03 0.00 0.00 0.00 0.00
uRMS 0.27 0.43 1.57 0.32 0.21 0.05 0.04 0.04 0.05 0.09 0.23 2.44 0.16 0.11 0.00 0.00 0.00 0.00
IA 0.55 0.39 0.71 0.43 0.36 0.31 0.43 0.38 0.36 0.28 0.18 0.65 0.47 0.25 0.24 0.19 0.19 0.23
CAV 0.50 0.46 0.92 0.20 0.30 0.53 0.34 0.38 0.48 0.15 0.24 1.66 0.07 0.90 0.06 0.03 0.03 0.06
CAD 0.29 0.46 1.58 0.22 0.68 0.17 0.10 0.11 0.15 0.07 0.24 3.37 0.06 0.97 0.03 0.02 0.02 0.03
SED 0.27 0.39 1.47 0.42 0.37 0.04 0.03 0.03 0.04 0.10 0.22 2.32 0.22 0.15 0.00 0.00 0.00 0.00
Ground motion dependent compound IMs
PGV/PGA 0.56 0.46 0.83 0.21 0.63 0.05 0.02 0.02 0.04 0.14 0.24 1.80 0.05 0.97 0.02 0.01 0.01 0.02
PGV2/PGA 0.48 0.36 0.76 0.51 0.29 0.01 0.01 0.01 0.01 0.20 0.20 1.03 0.36 0.03 0.00 0.00 0.00 0.00
Ia 0.85 0.43 0.51 0.29 0.01 0.04 0.07 0.05 0.05 0.49 0.19 0.39 0.42 0.53 0.65 0.75 0.72 0.69
Iv 0.88 0.39 0.45 0.42 0.60 0.06 0.04 0.04 0.06 0.32 0.22 0.68 0.24 0.20 0.00 0.00 0.00 0.00
Id 0.30 0.43 1.42 0.31 0.48 0.07 0.05 0.05 0.06 0.10 0.23 2.39 0.14 0.29 0.01 0.00 0.00 0.01
IF 0.79 0.34 0.43 0.56 0.31 0.09 0.07 0.08 0.08 0.34 0.19 0.56 0.44 0.02 0.00 0.00 0.00 0.00
IZ − 0.34 0.49 − 1.46 0.08 0.00 0.30 0.46 0.40 0.34 − 0.28 0.22 − 0.77 0.24 0.06 0.78 0.64 0.67 0.76
IC 0.36 0.44 1.22 0.27 0.62 0.93 0.75 0.77 0.89 0.17 0.22 1.31 0.24 0.29 0.05 0.03 0.03 0.05
SIR 0.20 0.48 2.43 0.13 0.00 0.09 0.17 0.13 0.11 0.17 0.19 1.11 0.41 0.04 0.28 0.38 0.34 0.31
Structure-independent spectral IMs
EPA 0.87 0.42 0.48 0.35 0.01 0.01 0.02 0.02 0.02 0.53 0.17 0.31 0.56 0.37 0.29 0.32 0.31 0.30
EPV 0.76 0.35 0.46 0.54 0.99 0.21 0.13 0.14 0.20 0.34 0.18 0.54 0.46 0.09 0.00 0.00 0.00 0.00
IEPA 0.89 0.41 0.46 0.37 0.01 0.02 0.04 0.03 0.03 0.53 0.17 0.31 0.56 0.58 0.49 0.56 0.54 0.52
IEPV 0.79 0.34 0.43 0.57 0.76 0.16 0.11 0.12 0.16 0.35 0.18 0.53 0.46 0.06 0.00 0.00 0.00 0.00
HI 0.66 0.36 0.54 0.52 0.32 0.09 0.07 0.07 0.09 0.26 0.20 0.76 0.36 0.04 0.00 0.00 0.00 0.00
ASI 0.87 0.42 0.48 0.35 0.01 0.01 0.02 0.02 0.02 0.53 0.17 0.31 0.56 0.37 0.29 0.32 0.31 0.30
ASI* 1.06 0.31 0.29 0.65 0.78 0.96 0.87 0.89 0.94 0.50 0.16 0.32 0.61 0.01 0.01 0.01 0.00 0.01
VSI 0.87 0.32 0.37 0.61 0.37 0.22 0.18 0.19 0.22 0.39 0.17 0.44 0.52 0.01 0.00 0.00 0.00 0.00
DSI 0.31 0.43 1.39 0.31 0.60 0.18 0.14 0.15 0.18 0.10 0.23 2.25 0.15 0.30 0.01 0.01 0.01 0.01
Structure-dependent spectral IMs
Sa(T1) 1.08 0.26 0.24 0.75 0.36 0.89 0.77 0.71 0.93 0.44 0.17 0.40 0.52 0.36 0.02 0.01 0.01 0.02
Sa(T2) 0.88 0.37 0.43 0.47 0.04 0.25 0.35 0.35 0.25 0.40 0.19 0.49 0.41 0.89 0.27 0.22 0.19 0.30
Sa(T3) 0.80 0.39 0.49 0.42 0.10 0.26 0.34 0.32 0.29 0.41 0.18 0.45 0.47 0.73 0.29 0.26 0.24 0.29
Sa(T4) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
Sa(T5) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
Sa(T6) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
Sa(T7) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
Sa(T8) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
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Table A2 (continued )

EDP max(Δr) max(Vb)

IM b βEDP|IM ζ R2 p-value b βEDP|IM ζ R2 p-value

Mw Repi Rrup RJB Rhyp Mw Repi Rrup RJB Rhyp

Sa(T9) 0.74 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.92 0.72 0.66 0.66 0.69
Sa(T10) 0.57 0.45 0.80 0.23 0.01 0.16 0.26 0.21 0.20 0.36 0.20 0.55 0.38 0.36 0.84 0.70 0.73 0.78
Sv(T1) 1.18 0.27 0.23 0.72 0.20 0.58 0.67 0.70 0.57 0.51 0.16 0.31 0.59 0.36 0.03 0.03 0.02 0.04
Sv(T2) 0.81 0.41 0.50 0.38 0.02 0.13 0.20 0.19 0.15 0.40 0.20 0.49 0.39 0.64 0.56 0.47 0.44 0.58
Sv(T3) 0.70 0.43 0.61 0.31 0.04 0.18 0.26 0.23 0.22 0.40 0.19 0.48 0.42 0.84 0.56 0.50 0.50 0.55
Sv(T4) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T5) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T6) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T7) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T8) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T9) 0.58 0.46 0.79 0.21 0.02 0.12 0.19 0.16 0.15 0.36 0.20 0.56 0.35 0.50 0.99 0.89 0.92 0.96
Sv(T10) 0.41 0.48 1.17 0.13 0.01 0.20 0.33 0.28 0.25 0.29 0.21 0.73 0.28 0.27 0.89 0.73 0.77 0.84
Sd(T1) 1.08 0.26 0.24 0.75 0.36 0.87 0.75 0.70 0.91 0.43 0.17 0.40 0.52 0.36 0.02 0.01 0.01 0.02
Sd(T2) 0.88 0.37 0.43 0.47 0.04 0.26 0.35 0.36 0.26 0.40 0.19 0.49 0.41 0.89 0.27 0.22 0.18 0.30
Sd(T3) 0.80 0.39 0.49 0.42 0.10 0.27 0.34 0.32 0.30 0.41 0.18 0.45 0.46 0.73 0.28 0.26 0.24 0.29
Sd(T4) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T5) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T6) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T7) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T8) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T9) 0.75 0.42 0.57 0.33 0.04 0.13 0.18 0.16 0.16 0.42 0.19 0.45 0.43 0.93 0.71 0.66 0.66 0.69
Sd(T10) 0.57 0.45 0.80 0.23 0.01 0.16 0.26 0.21 0.20 0.36 0.20 0.55 0.38 0.36 0.84 0.69 0.73 0.78
Sa(T = 0.1 s) 0.13 0.51 3.82 0.02 0.00 0.24 0.40 0.35 0.28 0.18 0.23 1.28 0.18 0.04 0.39 0.53 0.49 0.42
Sa(T = 0.2 s) 0.38 0.48 1.27 0.12 0.01 0.13 0.22 0.19 0.16 0.30 0.21 0.71 0.30 0.17 0.66 0.81 0.79 0.70
Sa(T = 0.5 s) 1.08 0.26 0.24 0.75 0.36 0.89 0.77 0.71 0.93 0.44 0.17 0.40 0.52 0.36 0.02 0.01 0.01 0.02
Sa(T = 1.0 s) 0.50 0.39 0.78 0.41 0.76 0.24 0.14 0.15 0.23 0.21 0.21 1.03 0.29 0.32 0.00 0.00 0.00 0.01
Sa* 0.83 0.31 0.38 0.63 0.79 0.15 0.10 0.10 0.16 0.34 0.19 0.55 0.44 0.12 0.00 0.00 0.00 0.00
Sa 0.99 0.27 0.27 0.73 0.44 0.11 0.08 0.07 0.12 0.40 0.18 0.44 0.50 0.05 0.00 0.00 0.00 0.00

Sa
0.82 0.32 0.39 0.62 0.60 0.11 0.07 0.07 0.11 0.33 0.19 0.57 0.43 0.08 0.00 0.00 0.00 0.00

Sa
1-to-2 0.91 0.37 0.40 0.50 0.04 0.26 0.35 0.36 0.26 0.41 0.19 0.47 0.42 0.95 0.25 0.20 0.17 0.28

Sa
1-to-3 0.91 0.37 0.40 0.50 0.04 0.26 0.35 0.36 0.26 0.41 0.19 0.47 0.42 0.95 0.25 0.20 0.17 0.28

Sa
1-to-4 0.91 0.37 0.40 0.50 0.04 0.25 0.34 0.34 0.25 0.41 0.19 0.46 0.43 0.96 0.26 0.21 0.18 0.29

Sa
1-to-5 0.91 0.37 0.40 0.50 0.05 0.25 0.33 0.34 0.25 0.41 0.19 0.46 0.43 0.96 0.26 0.21 0.18 0.29

Sa
1-to-6 0.91 0.37 0.40 0.50 0.05 0.25 0.33 0.34 0.25 0.41 0.19 0.46 0.43 0.96 0.26 0.21 0.18 0.29

Sa
1-to-7 0.91 0.37 0.40 0.50 0.05 0.25 0.33 0.34 0.25 0.41 0.19 0.46 0.43 0.96 0.26 0.21 0.18 0.29

Sa
1-to-8 0.91 0.37 0.40 0.50 0.05 0.25 0.33 0.34 0.25 0.41 0.19 0.46 0.43 0.96 0.26 0.21 0.18 0.29

Sa
1-to-9 0.92 0.37 0.40 0.50 0.05 0.24 0.33 0.34 0.24 0.41 0.19 0.45 0.43 0.97 0.26 0.22 0.18 0.30

Sa
1-to-10 0.94 0.36 0.39 0.50 0.04 0.20 0.27 0.28 0.20 0.43 0.19 0.43 0.45 0.97 0.30 0.25 0.22 0.34
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[14] Tomić I, Penna A, DeJong M, Butenweg C, Correia AA, Candeias PX, et al. Shake- 
table testing of a stone masonry building aggregate: overview of blind prediction 
study. Bull Earthq Eng 2023. https://doi.org/10.1007/s10518-022-01582-x.

[15] Lagomarsino S, Cattari S. PERPETUATE guidelines for seismic performance-based 
assessment of cultural heritage masonry structures. Bull Earthq Eng 2015;13: 
13–47.

[16] Park J, Towashiraporn P, Craig JI, Goodno BJ. Seismic fragility analysis of low- 
rise unreinforced masonry structures. Eng Struct 2009;31:125–37.

[17] Standard B. Eurocode 6—Design of masonry structures. London: British Standard 
Institution; 2005.
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